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Analysis of the distributions of physicochemical properties mapped onto molecular surfaces can highlight
important similarities or differences between compound classes, contributing to rational drug design efforts.
Here we present an approach that uses maximal common subgraph comparison and harmonic shape image
matching to detect locally similar regions between two molecular surfaces augmented with properties such
as the electrostatic potential or lipophilicity. The complexity of the problem is reduced by a set of filters
that implement various geometric and physicochemical heuristics. The approach was tested on dihydrofolate
reductase and thermolysin inhibitors and was shown to recover the correct alignments of the compounds
bound in the active sites.

1. INTRODUCTION package are kindly requested to contact the corresponding

Noncovalent intermolecular interactions can be described author directly.]
in terms of complementary molecular surfaces coming into
contact with each other. Comparison of molecular surfaces, 2. METHODS
based on their shape and/or physicochemical characteristics
can highlight and explain similarities in chemical and
biological propertied-® Analysis of local surface similarities
may help interpret the biological activity of drug candidate
molecules on a structural bagiand surface complementarity
is one of the most important heuristics built into docking
algorithms! It is therefore not surprising that a large number
of papers have been published on molecular surface com-
parison methodologie’s® ¢ By comparing the surface-
mapped physicochemical properties of a set of ligands known
to bind to the same receptor site, it should be possible to
identify those features that play an important role in binding.

The presence of local surface similarities may not be
immediately obvious from the chemical structures of the
ligands and therefore their detection can contribute to a better
understanding of the structural basis of biological activity.
To facilitate this analysis we developed a method for

" Molecular surfaces are usually represented by triangle
meshes containing up to several thousand points. It has been
shown earlier that the problem of finding similarities between
3D point sets is equivalent to the maximum common
subgraph or maximum subgraph isomorphism probieth.

A widely used method in graph theory is that of Barrow
and Burstaf® which builds up an association graph followed
by clique detectioft to find the maximum common sub-
graphs between two query graphs. Unfortunately this is an
NP-complete problerf? which makes it impossible to use
the complete set of points of complex surface objects. If one
wants to apply this algorithm to molecular surfaces the
number of points has to be reduced, and additional informa-
tion about the chemical and geometrical environment should
be represented in a way that is appropriate to dramatically
simplify the association graph. Cosgrove et al. reported such
detecting local surface similarities based on shape and?" applipation ofsubgraph isomorphism to molecular surface
surface-mapped molecular properties. Our approach is base§oMParisort. They described the surfaces by patches of the
on graph theory and a computer vision technique called same sha_pe type and used local geometry parameters to
Harmonic Shape Image Matchif§augmented by a se- decide which patches could overlap, but they did not consider

quence of filters to identify groups of corresponding points € chemical environment of points on the surface.
on two different molecular surfaces. Rigid-body alignment ~ Our approach is to generate a representation of the surfaces
of the chemically similar surface regions can then be used using slightly overlapping circular patches and keep track
to generate hypotheses about the common binding mode®nly of a set of shape critical point€P) corresponding to
of a set of molecules. Here we report the first implementation the centers of those patches. The idea of critical points was
of the method and present the results from a series of testgexplored by Connolly’s docking algoritimvhich was later
on eight thermolysin inhibitors and four dihydrofolate improved by Lin et aP. It reduces the number of possible
reductase ligands. [Readers wishing to use the SURFCOMPpoint pairs and associations by several orders of magnitude,
so that it is possible to build an initial association graph.
862&;5;?2%2% ?r:ggsp:soznoe;éfh g%gﬁfgfﬁgig?%r% @ This graph is further simplified by several filters that compare

1 ' ; ] R the physicochemical properties, surrounding shape, and local
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Table 1. Complexity of the Association Graph at Different Steps of the Filtering Process Shown for the Comparison of 1THL (A) and 4TMN
(B)

process step sectidn points AP points B’ nodes edges

at the beginning 1131 1265 1.4710° 2.04x 10%
after

- critical point detection 2.1 27 29 553 274 841

- fuzzy property filter 2.3 24 27 162 17 982

- harmonic shape image filter 2.4 18 25 63 1260

- distance filter 25 18 25 63 359

- overlap filter 2.6 18 25 60 93

2The section of the text where the step is describ&the number of distinct surface points left in the nodes of the association graph.

illustrates the complexity of the association graph at the initial ~ 2.2. The Association Graph.The vertices of the associa-
stage and after every step of the algorithm. tion graph correspond to pairs of critical poinisp; =

For efficiency reasons we emphasize the simplification of (CP,CPg), from the two surfaces compared. All the convex
the association graph which results in a set of smaller cliquesand concave critical points of the first surface are paired with
that must be combined to reproduce the complete similaritiesthe convex and concavePs of the second surface to form
between the molecular surfaces. We used a hierarchicalthe initial set of vertices. By definition, edges should be
clustering method to finally combine those cliques that drawn between every two pairs of critical points that do not
represent the same geometrical transformation of one mol-have a critical point in common (see Figure 1b), but for
ecule onto the other. computational reasons no edges are considered before the

The remaining part of this section describes in detail the application of the distance filter.
selection of the critical points, the creation and filtering of ~ 2.3. Fuzzy Property Filter. It is advisable to remove those
the association graph, and the final clique detection and critical point pairs from the association graph that do not
clustering (see also Figure 1). have the same chemical environment. Each vertex is thus

2.1. Definition of Critical Points. From the complete set  checked by a chemical filter to ensure that the corresponding
of points representing a molecular surface we extract a subsetritical points have similar chemical properties. We used
of shape critical points. To accurately describe the shape offuzzy sets and linguistic variabfégo express the similarity
the surface we used the first and second canonical curvaturdoetween chemical properties mapped onto the surface and
for each point on the surface. A second-order surface applied a defuzzification functiol, v (see eq 4), introduced
(paraboloid) is fitted in a least squares sense to the pointby Exner et alf as a similarity measure:
and its neighbors within a curvature cutoff rangg. This The chemical property mapped to a critical point is
paraboloid is a parametrical approximati&(u,v) of the classified by a family of five fuzzy sei (with overlapping
surface around the poimt, whereu and v are parameters  membership functionsi(x)) over the standardized range of
along the principal axes of the paraboloid. The first and property values; see eq 2 and Figure 3) which are grouped
second canonical curvatures are obtained as the first andnto a linguistic variableLV (eq 3).
second eigenvalue of the Hessian mattixrespectively??

(see eq 1) A = {(xu;(X))Ixe X} 2)
0°S,(U,2) 8°S,(u,v) LV ={A A,... A} (3)
_ a2 oudv . . .
H=|, ) (2) Two critical points,x andy, are then compared by their
G, (u,w) 7 S(uw) linguistic variables.Vyx and LV, by the following measure
dvou 92
5 Wilei(¥) — wi(Y)l
The signs of the canonical curvatures at each point are Dyxy)=)——""—"— 4
used to assign it to one of three shape classes: convex =2 (i (X) + 4i(y)

regions have two negative, concave two positive, and saddle

shaped ones one positive and one negative curvature. Hencevhere y; and w; be theith membership function and its

we define two classes of critical points: peakis a convex weight. The range oD,y is between 0 and 1, with zero

point with minimal curvature and @alleyis a concave point  indicating identity and one complete dissimilarity. The
with maximal curvature in a certain neighborhoogp, different weightsw; are set to 1.

corresponding to a “dip” or “hole” on the surface. To keep  Based on this fuzzy dissimilarity function we can define
the initial set of critical points as small as possible we do a crisp filter condition that eliminates all pairs of critical

not consider saddle points. points that are more dissimilar than a certain fuzzy threshold
The CP algorithm investigates every convex or concave F.
point on the surface and adds evg@gakor valley it finds 2.4. Harmonic Shape Image Filter.The comparison of

to the set of critical points. Figure 2 shows the peak and pairs of points alone is not sufficient to scan for surface
valley critical points of a thermolysin inhibitor molecule. It  similarities. It is also important to consider patches of the
can be seen that there are many more convex than concavenolecular surface around them and compare the shape of
CPs. This is due to the fact that most “valleys” are not in these patches with each other to establish whether both points
really concave but saddle shaped regions. are embedded in similar regions and how they are best
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Figure 1. Distribution of peak (red) and valley (green) critical points over the surface of N-(1-(2(R, S)-carboxy-4-phenyl-butyl)
cyclopentylcarbonyl)-(S)-tryptophan, a thermolysin inhibitor.

oriented relative to each other. Harmonic shape imdges Let us imagine that the edges in the triangulated surface mesh
provide a methodology to compare patches and to define ain 3D correspond to ideal springs resting at their equilibrium
relative orientation. They serve as 2D representations of 3D length. One can assign a “potential energy” level of zero to
surface regions, and the comparison of 3D patches is thusthis undistorted 3D conformation. Mapping onto a flat 2D
reduced to a rather simple 2D image comparison. surface involves stretching and/or shortening of at least some

The 2D images are generated via harmonic magping of these imaginary springs and consequently the “potential
which consists of “flattening out” a 3D surface patdp) ( energy” of the system will increase according to Hooke’s
onto a 2D plane @) so that an appropriate criterion law. The harmonic image of the original 3D patch is defined
measuring the distortion is minimized. In the case of by the arrangement in 2D where this increase in potential
harmonic maps and in particular if we consider the ap- energy is minimal. Zhang reported a complete procedure for
proximation introduced by Eck et &F this minimal distor- the harmonic mapping of circular surface patches of trian-
tion criterion can be formulated using a physical analogy. gulated mesheX.
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Figure 4. Distance filter, illustrating howda (left) anddg (right)
are measured and compared.

within the map’s range (hence reducing the resolution of the

image by approximately 25%). This problem can be solved
. . Lo . . . by a circular grid where all points lie within the unit digk.

Figure 2. Overview of the similarity detection algorithm. Starting . . .

from two molecular surfaces the critical points are identified (a) A circular grid also has a higher symmetry than a rectangular

and an initial association graph is built (b), which is then further 9rid which allows a faster computation of the relative
simplified by the fuzzy and harmonic shape image filter (c), the rotations.

distance filtt_ar (d), and the overlap filter (e). Of the final associatiqn The similarity of two harmonic images can be expressed
graph the cliques are detected (green, orange, blue, and gray regiong}y, the normalized correlation coefficie®® between the
and merged (clique Il and Il in this example) to yield the maximal - .
surface similarity (f). vectorsp andq representing the sequence of corr_espondmg

grid points. The correlation coefficient is a function of the
rotation angle9, and the similarity is defined as the maximum
of this function.

The harmonic image filter further reduces the number of
vertices in the association graph by eliminating all those pairs
that have a correlation coefficient below a specific shape
threshold R. Furthermore, due to the one-to-one cor-
respondence, a set of corresponding point pairs around the

3 -1 1 3 critical pointsCP,, CPg can be established which define
standardized property value the best overlap of the surrounding patches. This best overlap
Figure 3. Shape of the membership functions of the five fuzzy POSition is used later to check the simultaneous overlap of
sets in the linguistic variables that describe the chemical charactertwo point-pairs and to construct a rigid body transformation
of a critical point. E.g. in the case of the electrostatic potential, the between the detected similar regions.
functions correspond to highly negative, negative, neutral, positive, 2 5 pjstance Filter. The fuzzy and harmonic image filters
ﬁgﬁt.hlghly positive areas of the surface proceeding from left to consider only single pairs of critical pointsg), but the aim
is to find groups ofCP pairs which represent a similarity
between the compared surfaces. Thus it is necessary to form
edges between the point pairs so that those which can overlap

IS EEEE .

i (x)

It can be show#? that given a certain boundary there is
always a unigue harmonic mapping betwdeandD that i
constructs a one-to-one correspondence between points ot the same time are connected. _

P and vertices orD. Due to that correspondence, any _A simple but eﬁeptlve <_:r|ter|on is the d|ffe_ren_ce of the
property associated with the points in the original 3D patch distances of two point pairs oA andB. Considering two
can be transferred directly to the corresponding vertices in POINt Pairspp: = (CPa,CPey) andpp, = (CPa, CPa) with
the 2D harmonic image. While in principle any scalar the Positions of their critical pointspas, cps: andcpaz, cpsz,
function or property defined on a molecular surface can be € distance®, andoy are

associated with the harmonic image vertices, in this work 8 =llcpa; — cpali(A)
we focused on geometrical descriptors. A Al A2

Having mapped a pair of 3D patches onto the unit disk in Og = llcps; — Cpal(B) (5)
2D, the comparison consists of rotating the images relative
to each other until the orientation with maximum shape the Euclidean distances between the two critical points on
similarity is found. Shape is considered to be a curvature syrfacesA andB (see also Figure 4).
value, calculated for every vertex in the patch (see below).  Two pairs are connected in the association graph only if
As the vertex topology of the harmonic images is almost the distanceé, anddg are within a certain distance tolerance
always different, the comparison must be based on a regulart > |9a—0dg| andda, oy are larger than the minimal distance
grid scheme that is identical for all patches. ZKdng dmin. The minimal distance is introduced to avoid connections
resamples the harmonic maps with a quadratic n grid between very close critical point pairs which represent
where the lateral resolutiomis equal to the square root of essentially the same regions.
the number of pointsy in the patch. This approach has the 2.6. Overlap Filter. The distance filter checks if two pairs
disadvantage that only about 75% of the grid points are are at an appropriate distance for simultaneous overlap, but
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a large set of cliques consisting of two to four critical point
pairs. These small primary cliques can be combined into
larger clusters that represent different sets of corresponding
points on both surfaces.

For each cluster we can generate a rigid body transforma-
tion based on all correspondences detected by the harmonic
shape image matches for the patches around the critical
points. The transformations have been calculated by a least-
squares fi® of the two point sets superimposed over their
centers of gravity. The root-mean-square deviation (RMSD)
of this transformation serves as a quality criterion for the
cluster. From the large set of initial small clusters, those with
high RMSD values are eliminated (above 2.0 A), and the
remaining clusters are subjected to a stepwise hierarchical-
linkage clustering as follows.

For all pairs of clusters in the list that can be combined,
the RMS deviations for the transformation of cluster A with
the transformation matrix of cluster B and vice versa are
calculated; the smaller value (single linkage) is stored as the
distance between A and B. Two clusters A, B cannot be
combined, if a critical point is paired with a different CP in
A and B. At each step the algorithm takes the two closest
clusters and merges them into a new one while updating the
distances to the remaining clusters. The new one replaces
the merged clusters in the list, and the algorithm is repeated

PP, PP,

"""""""" CP axes until no more clusters can be merged. The result is a set of
ses=esemesmee=e patch projection of the CP axes possible local surface alignments.
——»  alignment axes Beside single linkage we also examined complete and

Figure 5. lllustration of the overlap filter. The axes between the average linkage but could not find any differences in the
two patches on both surfaces (black stippled lines) are projectedquality of the results. Because of that and because of the
onto the harmonic map of the surface patch, and the angles betweerfact that single-linkage can be implemented more efficiently

that projections and the axes that define “norttf) @ the optimal than complete and average linkage, we used single linkage
alignment of the patchpairpp; and pp, are determined as the in all our experiments

bearing from one patch to the other patch on the same surface. .
g P P 2.8. Molecular Surfaces and Properties.There are

harmonic image matching provides us with additional several ways to define molecular surfaces. Among the most
information about the optimal orientation of eaCR patch often used molecular surfaces in computational chemistry
pair_ Using this information the number of connections in af¢ the solvent aCCE?SibIe Surfaces, WhICh were ﬁ-rSt intro-
the association graph can be further reduced. duced by Lee and Richartfsand popularized by Michael
The idea is to check the simultaneous overlap of both pairs Connolly’s MS progrant: We generated the surfaces of the
via the orientation of the connecting axes on surfacand ~ test molecules with the MOLCAD modufeof Sybyl 6.9°
B. In Figure 5 the axes between the two critical points on USing a probe sphere radius of 1.4 A and a point density of
each surface are projected onto the harmonic maps of the3 dots per A _ _
patches and the closest points on the borders of the patches The two canonical curvatures (see eq 1) were appropriate
are determinedy, a andps, B2 denote the angles between for the critical point detection, but for the use in the harmonic
the optimal orientation (alignment axis) and the closest points Shape image filter we needed a univariate representation of
to theCP axes on surfacA andB, respectively. Thecand ~ the local curvature. We made use of the surface topography
B angles thus describe the bearing from one critical point index (STI, eq 7) as implemented in MOLCAfhat assigns
patch to the other. a real-valued curvature descriptor to each point according
The filter computes the heading differenggsg, for both to its first and second canonical curvatuce:( cc,)
CP patch pairs (eq 6) and removes the connection between

them, if none of them is within a certain angular tolerance g| = G~ cczif cc> 0 andcc, > 0 or if
c

Cbtol-
cc, > 0 andcc, < 0) and|cc,|>|c
¢1=1f1— oyl (e %=0) eal~lec
cc, + 3-c
b= 1Py — ayl 6) sSTI= ClC—ClCQif cc, < 0 andcc, < 0 or if
2.7. Clique Detection and Clustering.Having applied (cc, > 0 andcc, < 0) and|cc)| < |cc,| (7)

all the filters, the size of the association graph is reduced so

that it is possible to search for cliques in it. We used the We mapped two physicochemical properties onto the
algorithm of Bron and Kerboséhto find all cliques which molecular surfaces: the electrostatic potential (ESP) and the
are present in the association graph. This usually results inlipophilic potential (LP). The ESP can be calculated by
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Coulomb’s law if net atomic charges,, are available (eq Table 2. Experimental Conditions Used in the Thermolysin and
8, with r; andr; denoting the position of the surface dots DPHFR Experiments

and atoms, respectively). We used atomic point charges that filter parameter symbol sectién value? property
reproduced the electrostatic potential as calculated by thecurvature cutoff  ccr 2.1 20A
semiempirical program MOPAE. range
neighborhood Ncp 2.1 2.0 A (thermolysin)
N q 1.0 A(DHFR)
j fuzzy threshold F 2.3 0.3 ESPor LP
ESP¢) = Z 8) shape threshold R 2.4 0.6 STI
=i — rj” distance tolerance t 2.5 1.0 A (thermolysin)
2.0 A (DHFR)
) ] ] minimum distance  Smin 2.5 05A
The hydrophobic effect plays an important role in drug  angular tolerance ¢y 2.6 15.0
receptor interactions. While not a molecular property itself,
it can be described empirically by, for example, thectanol/ aThe section in the text where the filter is describet.different

e . . values were chosen for the thermolysin and dihydrofolate reductase
water partition coefficient (o). Ghose and Crippéh (DHFR) data set, it is noted in parentheseShe molecular-surface

assembled a table of fragmental Rgalues to calculate this  property applied to the specific filter (see also section 2.8): electrostatic
property. Using these tables we can assign a fragmentalpotential (ESP), lipophilic potential (LP), shape topology index (STI).

lipophilicity value for each atonf;, and assign a “lipophilic
potential”’, LRym(vi), to every point; on the surface similar ~ Table 3. Overlays of Thermolysin Inhibitors Performed with

to the ESP’ Electrostatic Potential (ESP) and Lipophilic Potential (LP)
a

. molecules o, RMSB[A] Lp RMSD2[A]

f-a(d A B CP$ points surf. struct CP$ point§ surf. struct
ZJ 9(d)) e GG 4 1 1THL 1TLP 8 553 1.15 058 6 441 1.60 1.04
LP (z;-)=J—with gd)=—"— 1TMN 12 711 177 040 8 554 155 0.31
HMAZ N i Cud — C 3TMN 7 366 1.04 0.33 368 1.12 0.55
@) e’(d; —C)+1 ATMN 5 431 107 118 349 098 0.95
Zg i 5TLN 4 227 1.93 5.68 181 1.78 5.11
] 9) 5TMN 4 336 1.04 1.20 169 0.98 7.08
6TMN 7 439 1.00 0.63 228 0.89 0.73
i ) » 1TLP 1TMN 10 630 1.73 0.53 309 1.35 1.39
whered; is the distance between the surface poiand the 3TMN 471 1.26 0.46 424 152 1.20

446 2.16 1.29
342 2.13 7.00
454 0.93 0.63
409 1.12 0.59
193 0.93 1.00
446 1.05 1.03
145 0.99 5.14

188 1.51 6.01
335 250 1.27
165 0.63 1.22
282 0.79 1.04
393 250 0.75
417 1.44 0.80
205 161 6.25
222 0.71 0.84
426 1.49 0.86
339 2.07 5.45
116 0.58 6.91
363 1.68 1.18
283 1.39 0.67
169 1.17 6.22
168 0.52 0.54
312 1.90 0.49
176 1.44 3.37
188 1.55 1.18
965 0.55 0.05

atomj, andC; andC, are experimental constants. 4TMN

3. RESULTS AND DISCUSSION 6TMN
1TMN 3TMN
We assembled two test sets of ligand structures: thermo- 4TMN

7

7

5

7

7

2

7
lysin inhibitors and dihydrofolate reductase (DHFR) inhibi- STLN 3 . 5 o
tors together with folic acid. The thermolysin set was subject 6TMN 11 glg ilzé 0.99
to an earlier surface similarity search performed by Cosgrove 3sTMN 4TMN 3 255 1.36 1.42
et al® with their SPAt program. The DHFR compounds were 5TLN 3 252 1.99 290
assembled from structures published by Li etégmetho- STMN 2 igg i-%g 111-52113
trexate, trimetoprim, and Br-WR92210) and Davies €Pal. 4TMN 5TLN 5 383 352 583
(f0|iC acid). 5TMN 5
6
2
2
0

320 0.75 0.43
All the structures were extracted from crystallographic data 409 083 0.58
f tein/ligand complexes available in the Brookhaven STLN 5TMN 1> 134 23

or pro g p 6TMN 153 1.77 5.78

Protein Data Bank (PDBY To compare the overlays 5TMN 6TMN 2 975 0.51 0.08

generated by our method with the experimental alignments

of the different ligands in the proteins' active sites, we 2Root mean square deviatiohThe number of critical points that

. . build the cluster for that overlay.Specifies the number of all surface
superimposed the complexes in the PDB by the baCkbonepoints in the patches that were used to calculate the surface alignment.

atoms of corresponding amino acids in the binding sites, This number indicates the size of the similar surface region (higher
which was always possible with a very small RMS deviation. number: larger region).

The structures of the ligands were extracted and hydrogen

atolms \;vere added Wm:j Sybyl €9For each sltrulcturg thed 3.1. Thermolysin Inhibitors. The structures of the eight
molecular surfaces and properties were calculated as deynermgolysin inhibitors in Chart 1 were extracted from the

scribed above using the experimental parameters as sUMppp Al molecules except 3TMN and 5TLN are complexed
marized in Table 2. via a negatively charged carboxyl- or phosphate group to a
We performed exhaustive comparisons with all pairs of zinc ion in the active site of the protein. Thus we placed
structures in the single data sets and manually inspected theingle negative formal charges at these positions. 5TLN is
overlays found by the method to ensure that the results reallyalso complexed to the zinc ion but via a hydroxamic acid
represent the expected molecular alignments. A single group which is also charged. 3STMN does not show any
comparison took about 75 s£(15 s) on a 2.4 GHz Intel  complex binding to the ion at all and was left uncharged.
Xeon processor with 2GByte of RAM, running under Linux We performed two different experiments, one with the
(kernel version 2.4.19). electrostatic and one with the lipophilic potential mapped

BI\JI\)hl\)l\)wml\)(ﬂml\)l\)@\lmw#l\)(ﬂwl\)l\)l\)hm
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Chart 1. 2D Structures of Eight Thermolysin Inhibitérs

o COOH )
H oL,
N o NP L _o
-00C H T N
7 0 HN
N
H

TCOOH
1THL 4TMN
HO OH
©, © CcooH o H
HO g O-P-N N N NoH
o H Q OH
Z HO™SN
N o
H
1TLP STLN
o COOH _
¥ o H O.pz0 0
-00C H o HN._COOH
Z
N
1TMN 5TMN
COOH
P Q\,o N O:P”O o]
N AP
H
y o] HN.__COOH

8

3TMN 6TMN
aThe structures are identified by the PDB entry name of the corresponding protein/ligand complex.

onto the molecular surfaces (Table 3). Using the ESP we and the important similar surface regions were detected
could find good overlays for all structures, except for 5TLN, correctly with RMSD values around 1.0 A. The only
which is quite different in shape, especially in the most exception is again 3TMN which shows rather poor align-
interesting region around the complex-building part. The rest ments with the structures of the second group. This is due
of the molecules can be divided into two classes: structuresto the different total charge which shifts the ESP values and
with tryptophan (grey boxes) and structures with an aliphatic t0 the fact that STMN does not have the complexing group
(alanine, leucine; blue boxes) residue at the C-terminal end.@nd the latter do not have the indole ring system.

The tryptophan structures could be overlaid with a RMS e overlays found by the surface matching conducted
deviation between the experimental and calculated aIignmentWlth the LP as the chemical f||te_r were in general not as
of less than 0.6 A. The only exception is 3TMN aligned to good as the ESP results.'The main reason IS th"."t regions of
1TMN which shows a slightly worse RMSD of 1.0 A mainly the m_olecules that are quite close to each other in the active
due to differences in their electrostatic potential and to a site, like the fructose residue of 1TLP and the phenyl ring

diff le b he indole i d th id of 1THL or 1TMN, show different lipophilicities. However
ifferent angle between the indole ring and the peptide o .t that the LP overlays of 3TMN on 1TMN, 5TMN,
backbone. The three structures with aliphatic residues show, 4 sTMN are significantly better than the ESP overlays is

comparable, good overlays with RMSD all below 0.6 A'A duetothe strong hydrophobic similarity between the alanine,
special case is the comparison of 5TMN and 6 TMN becausetryptophan, and leucine side chains. The results of both
the molecules are almost the same except for one group.experiments are presented in Table 3, and example align-
Consequently their shapes and electrostatic potential are alsgnents are displayed in Figures 6 and 7. Our results agree
very similar which is reflected by the small RMS deviation with the alignments published earlier by Cosgrove €t al.
of 0.05 A and the nearly one-to-one match of the surfaces. for the same data set.

As expected, the overlays between the two classes were not 3.2. DHFR Ligands. The set of four dihydrofolate

as good as the within-class results, but the general orientatiorreductase ligands, the substrate folic acid and three inhibitors,
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(a) (b)

© (d)

Figure 6. Surface alignment of 1THL (red) and 1TMN (blue). (a) and (b) display the alignment of the molecular surfaces and structures

respectively based on the detected surface similarity. (c) and (d) show the similar surface regions of 1THL and 1TMN color coded by the
electrostatic potential to illustrate their size and physicochemical similarity.

was prepared from the PDB exactly as the thermolysin data;?)?éi;'él ?é’gg?%ozgﬁ;ff Ligands Performed under Electrostatic
set above. The common feature of all four structures is a

nitrogen-containing heterocycle (pyrimidine or pteridine) ~__molecules _ _ RMSBIA]
substituted with either one amino and one hydroxyl group __ A B CP¢ points surf. struct
or two amino groups. The remaining parts of the molecules FOL MTX 6 449 1.36 1.23
are rather different except for MTX and FOL which have JV'VI'?'E 2 gé? é-gg 1-22
the same skeleton (see Chart 2). MTX T™MP 4 216 0.64 1.63

We found that FOL could be aligned properly with MTX WRB 3 181 111 5.82

, : T™P WRB 5 312 1.28 1.74
(Figure 8) and WRB especially around the heterocycles, but

that the alignment with TMP is poorer although the amino  aRoot mean square deviatiohThe number of critical points that
groups at the heterocycles were aligned correctly. Most of build the cluster for that overlay.Specifies the number of all surface
the other alignments were not as good as expected. This ig?0ints in the patches that were used to calculate the surface alignment.
probably due to the fact that around the active parts the Is:f]br:;_rnlt;‘i;g;drggitgﬁ)the size of the similar surface region (higher
surface of the molecules are rather featureless and flat, thus

only a few critical points are positioned at the substituents

of the heterocycles. In the alignments these points are mixed 4. CONCLUSION

with locally strong alignments on the side chains, leading We demonstrated that our method is capable of detecting
eventually to incorrect overlaps. Another problem with these regions of local similarities between two molecular surfaces
molecules is a local surface symmetry around the CPs onin a reasonable amount of time. The surface point cor-
the amino-groups which leads to alignments that are locally respondences can then be used to calculate superimpositions
correct but do not reproduce the actual relative positions atbased orpartial rather than global surface similarities. Since
the binding sites. (e.g. MTX, WRB). The results are in most ligand-receptor interactions only a certain part of
summarized in Table 4. the ligand or the receptor is involved in the binding, our
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(a) (b)

Figure 7. Surface alignment of 1TLP (red) and 6TMN (blue). (a) and (b) display the alignment of the molecular surfaces and structures
respectively based on the detected surface similarity. (c) and (d) show the similar surface regions of 1TLP and 6 TMN color coded by the
electrostatic potential to illustrate their size and physicochemical similarity.

Chart 2. 2D Structures of Four DHFR Ligands
HO. _O HO. O

0] 0]

OH /@Au OH NH, /@)‘\H OH
N7 N\ N (0] NTX N\ N (6]
BN | | H L)

H,N™ "N” N N” N

\_g

H,N
Folic Acid (FOL) Methotrexate (MTX)
NH, NH
O 2
B ~
im ) L
HN" N 0 S ,f/
2 oL H,N" N Br
Trimethoprim (TMP) Br-WR99210 (WRB)

method can provide important insights into the mechanism the molecular analogies than shape alone. The filter based
of receptor binding even if the structure of the binding site procedure also provides a very flexible framework that can
is unknown. be adapted to a large variety of surface similarity problems.

The representation of the results as a hierarchical cluster Although the results presented here were obtained using
of subalignments allows a deep insight into the nature of only ESP and LP mapped onto the molecular surfaces, it is
the similarity between the two molecules. On the way from straightforward to use other relevant physicochemical prop-
the largest down to the smaller alignments one can easilyerties such as hydrogen bonding donor/acceptor parameters
identify the similar surface regions that reveal a good picture within the same framework. This could be implemented
of the important stereochemical surface patterns (Figureseither for the whole surface as described by Exner &ai.
6—8). for each single site as proposed by Raevsky ét4l.

With our approach it is possible to compare two surfaces Our method is currently applicable to rigid molecular
using their shape and physicochemical properties at the sameonformations only. However, as the comparison runs
time. The results therefore represent a simultaneous matchreasonably fast, it is possible to combine it with a confor-
of geometry and chemistry which gives a deeper insight into mational analysis and scan a set of low-energy conformations



J J. Chem. Inf. Comput. Sci. HOFBAUER ET AL.

(c) (@

Figure 8. Surface alignment of FOL (red) and MTX (blue). (a) and (b) display the alignment of the molecular surfaces and structures
respectively based on the detected surface similarity. (¢) and (d) show the similar surface regions of FOL and MTX color coded by the
electrostatic potential to illustrate their size and relative physicochemical similarity.

of each molecule as expected from a complete 3D molecularsimilarities that are not discovered by conventional structure

similarity analysis. similarity algorithms.
In addition to the investigation of the relative configura-
tions of ligands within a specific binding site, presented in ACKNOWLEDGMENT
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