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Analysis of the distributions of physicochemical properties mapped onto molecular surfaces can highlight
important similarities or differences between compound classes, contributing to rational drug design efforts.
Here we present an approach that uses maximal common subgraph comparison and harmonic shape image
matching to detect locally similar regions between two molecular surfaces augmented with properties such
as the electrostatic potential or lipophilicity. The complexity of the problem is reduced by a set of filters
that implement various geometric and physicochemical heuristics. The approach was tested on dihydrofolate
reductase and thermolysin inhibitors and was shown to recover the correct alignments of the compounds
bound in the active sites.

1. INTRODUCTION

Noncovalent intermolecular interactions can be described
in terms of complementary molecular surfaces coming into
contact with each other. Comparison of molecular surfaces,
based on their shape and/or physicochemical characteristics,
can highlight and explain similarities in chemical and
biological properties.1-5 Analysis of local surface similarities
may help interpret the biological activity of drug candidate
molecules on a structural basis,6 and surface complementarity
is one of the most important heuristics built into docking
algorithms.7 It is therefore not surprising that a large number
of papers have been published on molecular surface com-
parison methodologies.2,8-16 By comparing the surface-
mapped physicochemical properties of a set of ligands known
to bind to the same receptor site, it should be possible to
identify those features that play an important role in binding.

The presence of local surface similarities may not be
immediately obvious from the chemical structures of the
ligands and therefore their detection can contribute to a better
understanding of the structural basis of biological activity.
To facilitate this analysis we developed a method for
detecting local surface similarities based on shape and
surface-mapped molecular properties. Our approach is based
on graph theory and a computer vision technique called
Harmonic Shape Image Matching,17 augmented by a se-
quence of filters to identify groups of corresponding points
on two different molecular surfaces. Rigid-body alignment
of the chemically similar surface regions can then be used
to generate hypotheses about the common binding modes
of a set of molecules. Here we report the first implementation
of the method and present the results from a series of tests
on eight thermolysin inhibitors and four dihydrofolate
reductase ligands. [Readers wishing to use the SURFCOMP

package are kindly requested to contact the corresponding
author directly.]

2. METHODS

Molecular surfaces are usually represented by triangle
meshes containing up to several thousand points. It has been
shown earlier that the problem of finding similarities between
3D point sets is equivalent to the maximum common
subgraph or maximum subgraph isomorphism problem.18,19

A widely used method in graph theory is that of Barrow
and Burstall20 which builds up an association graph followed
by clique detection21 to find the maximum common sub-
graphs between two query graphs. Unfortunately this is an
NP-complete problem,22 which makes it impossible to use
the complete set of points of complex surface objects. If one
wants to apply this algorithm to molecular surfaces the
number of points has to be reduced, and additional informa-
tion about the chemical and geometrical environment should
be represented in a way that is appropriate to dramatically
simplify the association graph. Cosgrove et al. reported such
an application of subgraph isomorphism to molecular surface
comparison.6 They described the surfaces by patches of the
same shape type and used local geometry parameters to
decide which patches could overlap, but they did not consider
the chemical environment of points on the surface.

Our approach is to generate a representation of the surfaces
using slightly overlapping circular patches and keep track
only of a set of shape critical points (CP) corresponding to
the centers of those patches. The idea of critical points was
explored by Connolly’s docking algorithm1 which was later
improved by Lin et al.3 It reduces the number of possible
point pairs and associations by several orders of magnitude,
so that it is possible to build an initial association graph.
This graph is further simplified by several filters that compare
the physicochemical properties, surrounding shape, and local
arrangement of the critical points on both surfaces. Table 1
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illustrates the complexity of the association graph at the initial
stage and after every step of the algorithm.

For efficiency reasons we emphasize the simplification of
the association graph which results in a set of smaller cliques
that must be combined to reproduce the complete similarities
between the molecular surfaces. We used a hierarchical
clustering method to finally combine those cliques that
represent the same geometrical transformation of one mol-
ecule onto the other.

The remaining part of this section describes in detail the
selection of the critical points, the creation and filtering of
the association graph, and the final clique detection and
clustering (see also Figure 1).

2.1. Definition of Critical Points. From the complete set
of points representing a molecular surface we extract a subset
of shape critical points. To accurately describe the shape of
the surface we used the first and second canonical curvature
for each point on the surface. A second-order surface
(paraboloid) is fitted in a least squares sense to the point
and its neighbors within a curvature cutoff rangecCR. This
paraboloid is a parametrical approximationSp(u,V) of the
surface around the pointp, whereu and V are parameters
along the principal axes of the paraboloid. The first and
second canonical curvatures are obtained as the first and
second eigenvalue of the Hessian matrixH, respectively,23

(see eq 1)

The signs of the canonical curvatures at each point are
used to assign it to one of three shape classes: convex
regions have two negative, concave two positive, and saddle
shaped ones one positive and one negative curvature. Hence
we define two classes of critical points: Apeakis a convex
point with minimal curvature and aValley is a concave point
with maximal curvature in a certain neighborhoodnCP,
corresponding to a “dip” or “hole” on the surface. To keep
the initial set of critical points as small as possible we do
not consider saddle points.

The CP algorithm investigates every convex or concave
point on the surface and adds everypeakor Valley it finds
to the set of critical points. Figure 2 shows the peak and
valley critical points of a thermolysin inhibitor molecule. It
can be seen that there are many more convex than concave
CPs. This is due to the fact that most “valleys” are not in
really concave but saddle shaped regions.

2.2. The Association Graph.The vertices of the associa-
tion graph correspond to pairs of critical points,ppij )
(CPiA,CPjB), from the two surfaces compared. All the convex
and concave critical points of the first surface are paired with
the convex and concaveCPs of the second surface to form
the initial set of vertices. By definition, edges should be
drawn between every two pairs of critical points that do not
have a critical point in common (see Figure 1b), but for
computational reasons no edges are considered before the
application of the distance filter.

2.3. Fuzzy Property Filter. It is advisable to remove those
critical point pairs from the association graph that do not
have the same chemical environment. Each vertex is thus
checked by a chemical filter to ensure that the corresponding
critical points have similar chemical properties. We used
fuzzy sets and linguistic variables24 to express the similarity
between chemical properties mapped onto the surface and
applied a defuzzification function,DLV (see eq 4), introduced
by Exner et al.16 as a similarity measure:

The chemical property mapped to a critical point is
classified by a family of five fuzzy setsAi (with overlapping
membership functionsµi(x)) over the standardized range of
property valuesX; see eq 2 and Figure 3) which are grouped
into a linguistic variableLV (eq 3).

Two critical points,x andy, are then compared by their
linguistic variablesLVx andLVy by the following measure

where µi and wi be the ith membership function and its
weight. The range ofDLV is between 0 and 1, with zero
indicating identity and one complete dissimilarity. The
different weightswi are set to 1.

Based on this fuzzy dissimilarity function we can define
a crisp filter condition that eliminates all pairs of critical
points that are more dissimilar than a certain fuzzy threshold
F.

2.4. Harmonic Shape Image Filter.The comparison of
pairs of points alone is not sufficient to scan for surface
similarities. It is also important to consider patches of the
molecular surface around them and compare the shape of
these patches with each other to establish whether both points
are embedded in similar regions and how they are best

Table 1. Complexity of the Association Graph at Different Steps of the Filtering Process Shown for the Comparison of 1THL (A) and 4TMN
(B)

process step sectiona points Ab points Bb nodes edges

at the beginning 1131 1265 1.47× 106 2.04× 1012

after
- critical point detection 2.1 27 29 553 274 841
- fuzzy property filter 2.3 24 27 162 17 982
- harmonic shape image filter 2.4 18 25 63 1260
- distance filter 2.5 18 25 63 359
- overlap filter 2.6 18 25 60 93

a The section of the text where the step is described.b The number of distinct surface points left in the nodes of the association graph.
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oriented relative to each other. Harmonic shape images17

provide a methodology to compare patches and to define a
relative orientation. They serve as 2D representations of 3D
surface regions, and the comparison of 3D patches is thus
reduced to a rather simple 2D image comparison.

The 2D images are generated via harmonic mapping25

which consists of “flattening out” a 3D surface patch (P)
onto a 2D plane (D) so that an appropriate criterion
measuring the distortion is minimized. In the case of
harmonic maps and in particular if we consider the ap-
proximation introduced by Eck et al.,26 this minimal distor-
tion criterion can be formulated using a physical analogy.

Let us imagine that the edges in the triangulated surface mesh
in 3D correspond to ideal springs resting at their equilibrium
length. One can assign a “potential energy” level of zero to
this undistorted 3D conformation. Mapping onto a flat 2D
surface involves stretching and/or shortening of at least some
of these imaginary springs and consequently the “potential
energy” of the system will increase according to Hooke’s
law. The harmonic image of the original 3D patch is defined
by the arrangement in 2D where this increase in potential
energy is minimal. Zhang reported a complete procedure for
the harmonic mapping of circular surface patches of trian-
gulated meshes.27

Figure 1. Distribution of peak (red) and valley (green) critical points over the surface of N-(1-(2(R, S)-carboxy-4-phenyl-butyl)
cyclopentylcarbonyl)-(S)-tryptophan, a thermolysin inhibitor.
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It can be shown25 that given a certain boundary there is
always a unique harmonic mapping betweenP andD that
constructs a one-to-one correspondence between points on
P and vertices onD. Due to that correspondence, any
property associated with the points in the original 3D patch
can be transferred directly to the corresponding vertices in
the 2D harmonic image. While in principle any scalar
function or property defined on a molecular surface can be
associated with the harmonic image vertices, in this work
we focused on geometrical descriptors.

Having mapped a pair of 3D patches onto the unit disk in
2D, the comparison consists of rotating the images relative
to each other until the orientation with maximum shape
similarity is found. Shape is considered to be a curvature
value, calculated for every vertex in the patch (see below).

As the vertex topology of the harmonic images is almost
always different, the comparison must be based on a regular
grid scheme that is identical for all patches. Zhang27

resamples the harmonic maps with a quadraticn × n grid
where the lateral resolutionn is equal to the square root of
the number of pointsnp in the patch. This approach has the
disadvantage that only about 75% of the grid points are

within the map’s range (hence reducing the resolution of the
image by approximately 25%). This problem can be solved
by a circular grid where all points lie within the unit disk.28

A circular grid also has a higher symmetry than a rectangular
grid which allows a faster computation of the relative
rotations.

The similarity of two harmonic images can be expressed
by the normalized correlation coefficientR between the
vectorsp andq representing the sequence of corresponding
grid points. The correlation coefficient is a function of the
rotation angleθ, and the similarity is defined as the maximum
of this function.

The harmonic image filter further reduces the number of
vertices in the association graph by eliminating all those pairs
that have a correlation coefficient below a specific shape
threshold R. Furthermore, due to the one-to-one cor-
respondence, a set of corresponding point pairs around the
critical pointsCPΑ, CPΒ can be established which define
the best overlap of the surrounding patches. This best overlap
position is used later to check the simultaneous overlap of
two point-pairs and to construct a rigid body transformation
between the detected similar regions.

2.5. Distance Filter.The fuzzy and harmonic image filters
consider only single pairs of critical points (pp), but the aim
is to find groups ofCP pairs which represent a similarity
between the compared surfaces. Thus it is necessary to form
edges between the point pairs so that those which can overlap
at the same time are connected.

A simple but effective criterion is the difference of the
distances of two point pairs onΑ andΒ. Considering two
point pairspp1 ) (CPA1,CPB1) andpp2 ) (CPA2,CPB2) with
the positions of their critical pointscpΑ1, cpΒ1 andcpΑ2, cpΒ2,
the distancesδΑ andδΒ are

the Euclidean distances between the two critical points on
surfacesΑ andΒ (see also Figure 4).

Two pairs are connected in the association graph only if
the distancesδΑ andδΒ are within a certain distance tolerance
t g |δA-δB| andδΑ, δΒ are larger than the minimal distance
δmin. The minimal distance is introduced to avoid connections
between very close critical point pairs which represent
essentially the same regions.

2.6. Overlap Filter. The distance filter checks if two pairs
are at an appropriate distance for simultaneous overlap, but

Figure 2. Overview of the similarity detection algorithm. Starting
from two molecular surfaces the critical points are identified (a)
and an initial association graph is built (b), which is then further
simplified by the fuzzy and harmonic shape image filter (c), the
distance filter (d), and the overlap filter (e). Of the final association
graph the cliques are detected (green, orange, blue, and gray regions)
and merged (clique II and II in this example) to yield the maximal
surface similarity (f).

Figure 3. Shape of the membership functions of the five fuzzy
sets in the linguistic variables that describe the chemical character
of a critical point. E.g. in the case of the electrostatic potential, the
functions correspond to highly negative, negative, neutral, positive,
and highly positive areas of the surface proceeding from left to
right.

Figure 4. Distance filter, illustrating howδA (left) andδB (right)
are measured and compared.

δΑ ) |cpΑ1 - cpΑ2|(A)

δB ) |cpB1 - cpB2|(B) (5)
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harmonic image matching provides us with additional
information about the optimal orientation of eachCP patch
pair. Using this information the number of connections in
the association graph can be further reduced.

The idea is to check the simultaneous overlap of both pairs
via the orientation of the connecting axes on surfaceΑ and
Β. In Figure 5 the axes between the two critical points on
each surface are projected onto the harmonic maps of the
patches and the closest points on the borders of the patches
are determined.R1, R2 andâ1, â2 denote the angles between
the optimal orientation (alignment axis) and the closest points
to theCP axes on surfaceΑ andΒ, respectively. TheR and
â angles thus describe the bearing from one critical point
patch to the other.

The filter computes the heading differencesφ1, φ2 for both
CP patch pairs (eq 6) and removes the connection between
them, if none of them is within a certain angular tolerance
φtol.

2.7. Clique Detection and Clustering.Having applied
all the filters, the size of the association graph is reduced so
that it is possible to search for cliques in it. We used the
algorithm of Bron and Kerbosch21 to find all cliques which
are present in the association graph. This usually results in

a large set of cliques consisting of two to four critical point
pairs. These small primary cliques can be combined into
larger clusters that represent different sets of corresponding
points on both surfaces.

For each cluster we can generate a rigid body transforma-
tion based on all correspondences detected by the harmonic
shape image matches for the patches around the critical
points. The transformations have been calculated by a least-
squares fit29 of the two point sets superimposed over their
centers of gravity. The root-mean-square deviation (RMSD)
of this transformation serves as a quality criterion for the
cluster. From the large set of initial small clusters, those with
high RMSD values are eliminated (above 2.0 Å), and the
remaining clusters are subjected to a stepwise hierarchical-
linkage clustering as follows.

For all pairs of clusters in the list that can be combined,
the RMS deviations for the transformation of cluster A with
the transformation matrix of cluster B and vice versa are
calculated; the smaller value (single linkage) is stored as the
distance between A and B. Two clusters A, B cannot be
combined, if a critical point is paired with a different CP in
A and B. At each step the algorithm takes the two closest
clusters and merges them into a new one while updating the
distances to the remaining clusters. The new one replaces
the merged clusters in the list, and the algorithm is repeated
until no more clusters can be merged. The result is a set of
possible local surface alignments.

Beside single linkage we also examined complete and
average linkage but could not find any differences in the
quality of the results. Because of that and because of the
fact that single-linkage can be implemented more efficiently
than complete and average linkage, we used single linkage
in all our experiments.

2.8. Molecular Surfaces and Properties.There are
several ways to define molecular surfaces. Among the most
often used molecular surfaces in computational chemistry
are the solvent accessible surfaces, which were first intro-
duced by Lee and Richards30 and popularized by Michael
Connolly’s MS program.31 We generated the surfaces of the
test molecules with the MOLCAD module32 of Sybyl 6.933

using a probe sphere radius of 1.4 Å and a point density of
3 dots per Å2.

The two canonical curvatures (see eq 1) were appropriate
for the critical point detection, but for the use in the harmonic
shape image filter we needed a univariate representation of
the local curvature. We made use of the surface topography
index (STI, eq 7) as implemented in MOLCAD34 that assigns
a real-valued curvature descriptor to each point according
to its first and second canonical curvature (cc1, cc2)

We mapped two physicochemical properties onto the
molecular surfaces: the electrostatic potential (ESP) and the
lipophilic potential (LP). The ESP can be calculated by

Figure 5. Illustration of the overlap filter. The axes between the
two patches on both surfaces (black stippled lines) are projected
onto the harmonic map of the surface patch, and the angles between
that projections and the axes that define “north” (0°) in the optimal
alignment of the patchpairspp1 and pp2 are determined as the
bearing from one patch to the other patch on the same surface.

φ1 ) |â1 - R1|
φ2 ) |â2 - R2| (6)

STI )
cc1 - cc2

cc1
if cc1> 0 andcc2 > 0 or if

(cc1 > 0 andcc2 e 0) and|cc1|>|cc2|

STI )
cc1 + 3‚cc2

cc1
if cc1 e 0 andcc2 < 0 or if

(cc1 > 0 andcc2 e 0) and|cc1| e |cc2| (7)

SURFCOMP: AN APPROACH TOMOLECULAR SURFACE COMPARISON J. Chem. Inf. Comput. Sci.E



Coulomb’s law if net atomic charges,qi, are available (eq
8, with ri and rj denoting the position of the surface dots
and atoms, respectively). We used atomic point charges that
reproduced the electrostatic potential as calculated by the
semiempirical program MOPAC.35

The hydrophobic effect plays an important role in drug-
receptor interactions. While not a molecular property itself,
it can be described empirically by, for example, then-octanol/
water partition coefficient (logP). Ghose and Crippen36

assembled a table of fragmental logP values to calculate this
property. Using these tables we can assign a fragmental
lipophilicity value for each atom,fi, and assign a “lipophilic
potential”, LPHM(Vi), to every pointVi on the surface similar
to the ESP37

wheredij is the distance between the surface pointi and the
atom j, andC1 andC2 are experimental constants.

3. RESULTS AND DISCUSSION

We assembled two test sets of ligand structures: thermo-
lysin inhibitors and dihydrofolate reductase (DHFR) inhibi-
tors together with folic acid. The thermolysin set was subject
to an earlier surface similarity search performed by Cosgrove
et al.6 with their SPAt program. The DHFR compounds were
assembled from structures published by Li et al.38 (metho-
trexate, trimetoprim, and Br-WR92210) and Davies et al.39

(folic acid).

All the structures were extracted from crystallographic data
of protein/ligand complexes available in the Brookhaven
Protein Data Bank (PDB).40 To compare the overlays
generated by our method with the experimental alignments
of the different ligands in the proteins' active sites, we
superimposed the complexes in the PDB by the backbone
atoms of corresponding amino acids in the binding sites,
which was always possible with a very small RMS deviation.
The structures of the ligands were extracted and hydrogen
atoms were added with Sybyl 6.9.33 For each structure the
molecular surfaces and properties were calculated as de-
scribed above using the experimental parameters as sum-
marized in Table 2.

We performed exhaustive comparisons with all pairs of
structures in the single data sets and manually inspected the
overlays found by the method to ensure that the results really
represent the expected molecular alignments. A single
comparison took about 75 s (( 15 s) on a 2.4 GHz Intel
Xeon processor with 2GByte of RAM, running under Linux
(kernel version 2.4.19).

3.1. Thermolysin Inhibitors. The structures of the eight
thermolysin inhibitors in Chart 1 were extracted from the
PDB. All molecules except 3TMN and 5TLN are complexed
via a negatively charged carboxyl- or phosphate group to a
zinc ion in the active site of the protein. Thus we placed
single negative formal charges at these positions. 5TLN is
also complexed to the zinc ion but via a hydroxamic acid
group which is also charged. 3TMN does not show any
complex binding to the ion at all and was left uncharged.

We performed two different experiments, one with the
electrostatic and one with the lipophilic potential mapped

ESP(Vi) ) ∑
j)1

N qj

|ri - rj|
(8)

LPHM(Vi) )

∑
j

N

fj‚g(djj)

∑
j

N

g(dij)

with g(dij) )
e-C1C1 + 1

eC1(dij - C2) + 1

(9)

Table 2. Experimental Conditions Used in the Thermolysin and
DHFR Experiments

filter parameter symbol sectiona valueb propertyc

curvature cutoff
range

cCR 2.1 2.0 Å

neighborhood nCP 2.1 2.0 Å (thermolysin)
1.0 Å(DHFR)

fuzzy threshold F 2.3 0.3 ESP or LP
shape threshold R 2.4 0.6 STI
distance tolerance t 2.5 1.0 Å (thermolysin)

2.0 Å (DHFR)
minimum distance δmin 2.5 0.5 Å
angular tolerance φtol 2.6 15.0°

a The section in the text where the filter is described.b If different
values were chosen for the thermolysin and dihydrofolate reductase
(DHFR) data set, it is noted in parentheses.c The molecular-surface
property applied to the specific filter (see also section 2.8): electrostatic
potential (ESP), lipophilic potential (LP), shape topology index (STI).

Table 3. Overlays of Thermolysin Inhibitors Performed with
Electrostatic Potential (ESP) and Lipophilic Potential (LP)

molecules RMSDa [Å] RMSDa [Å]

A B
ESP
CPsb pointsc surf. struct

LP
CPsb pointsc surf. struct

1THL 1TLP 8 553 1.15 0.58 6 441 1.60 1.04
1TMN 12 711 1.77 0.40 8 554 1.55 0.31
3TMN 7 366 1.04 0.33 5 368 1.12 0.55
4TMN 5 431 1.07 1.18 4 349 0.98 0.95
5TLN 4 227 1.93 5.68 2 181 1.78 5.11
5TMN 4 336 1.04 1.20 2 169 0.98 7.08
6TMN 7 439 1.00 0.63 2 228 0.89 0.73

1TLP 1TMN 10 630 1.73 0.53 3 309 1.35 1.39
3TMN 7 471 1.26 0.46 5 424 1.52 1.20
4TMN 7 446 2.16 1.29 2 188 1.51 6.01
5TLN 5 342 2.13 7.00 4 335 2.50 1.27
5TMN 7 454 0.93 0.63 3 165 0.63 1.22
6TMN 7 409 1.12 0.59 5 282 0.79 1.04

1TMN 3TMN 2 193 0.93 1.00 7 393 2.50 0.75
4TMN 7 446 1.05 1.03 6 417 1.44 0.80
5TLN 2 145 0.99 5.14 2 205 1.61 6.25
5TMN 9 464 1.21 0.93 2 222 0.71 0.84
6TMN 11 610 1.26 0.99 5 426 1.49 0.86

3TMN 4TMN 3 255 1.36 1.42 5 339 2.07 5.45
5TLN 3 252 1.99 2.90 2 116 0.58 6.91
5TMN 3 254 1.18 1.51 5 363 1.68 1.18
6TMN 2 180 1.26 4.28 3 283 1.39 0.67

4TMN 5TLN 5 383 3.52 5.83 2 169 1.17 6.22
5TMN 5 320 0.75 0.43 2 168 0.52 0.54
6TMN 6 409 0.83 0.58 4 312 1.90 0.49

5TLN 5TMN 2 175 1.34 2.31 2 176 1.44 3.37
6TMN 2 153 1.77 5.78 2 188 1.55 1.18

5TMN 6TMN 20 975 0.51 0.08 19 965 0.55 0.05

a Root mean square deviation.b The number of critical points that
build the cluster for that overlay.c Specifies the number of all surface
points in the patches that were used to calculate the surface alignment.
This number indicates the size of the similar surface region (higher
number: larger region).
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onto the molecular surfaces (Table 3). Using the ESP we
could find good overlays for all structures, except for 5TLN,
which is quite different in shape, especially in the most
interesting region around the complex-building part. The rest
of the molecules can be divided into two classes: structures
with tryptophan (grey boxes) and structures with an aliphatic
(alanine, leucine; blue boxes) residue at the C-terminal end.
The tryptophan structures could be overlaid with a RMS
deviation between the experimental and calculated alignment
of less than 0.6 Å. The only exception is 3TMN aligned to
1TMN which shows a slightly worse RMSD of 1.0 Å mainly
due to differences in their electrostatic potential and to a
different angle between the indole ring and the peptide
backbone. The three structures with aliphatic residues show
comparable, good overlays with RMSD all below 0.6 Å. A
special case is the comparison of 5TMN and 6TMN because
the molecules are almost the same except for one group.
Consequently their shapes and electrostatic potential are also
very similar which is reflected by the small RMS deviation
of 0.05 Å and the nearly one-to-one match of the surfaces.
As expected, the overlays between the two classes were not
as good as the within-class results, but the general orientation

and the important similar surface regions were detected
correctly with RMSD values around 1.0 Å. The only
exception is again 3TMN which shows rather poor align-
ments with the structures of the second group. This is due
to the different total charge which shifts the ESP values and
to the fact that 3TMN does not have the complexing group
and the latter do not have the indole ring system.

The overlays found by the surface matching conducted
with the LP as the chemical filter were in general not as
good as the ESP results. The main reason is that regions of
the molecules that are quite close to each other in the active
site, like the fructose residue of 1TLP and the phenyl ring
of 1THL or 1TMN, show different lipophilicities. However
the fact that the LP overlays of 3TMN on 1TMN, 5TMN,
and 6TMN are significantly better than the ESP overlays is
due to the strong hydrophobic similarity between the alanine,
tryptophan, and leucine side chains. The results of both
experiments are presented in Table 3, and example align-
ments are displayed in Figures 6 and 7. Our results agree
with the alignments published earlier by Cosgrove et al.6

for the same data set.
3.2. DHFR Ligands. The set of four dihydrofolate

reductase ligands, the substrate folic acid and three inhibitors,

Chart 1. 2D Structures of Eight Thermolysin Inhibitorsa

a The structures are identified by the PDB entry name of the corresponding protein/ligand complex.
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was prepared from the PDB exactly as the thermolysin data
set above. The common feature of all four structures is a
nitrogen-containing heterocycle (pyrimidine or pteridine)
substituted with either one amino and one hydroxyl group
or two amino groups. The remaining parts of the molecules
are rather different except for MTX and FOL which have
the same skeleton (see Chart 2).

We found that FOL could be aligned properly with MTX
(Figure 8) and WRB especially around the heterocycles, but
that the alignment with TMP is poorer although the amino
groups at the heterocycles were aligned correctly. Most of
the other alignments were not as good as expected. This is
probably due to the fact that around the active parts the
surface of the molecules are rather featureless and flat, thus
only a few critical points are positioned at the substituents
of the heterocycles. In the alignments these points are mixed
with locally strong alignments on the side chains, leading
eventually to incorrect overlaps. Another problem with these
molecules is a local surface symmetry around the CPs on
the amino-groups which leads to alignments that are locally
correct but do not reproduce the actual relative positions at
the binding sites. (e.g. MTX, WRB). The results are
summarized in Table 4.

4. CONCLUSION

We demonstrated that our method is capable of detecting
regions of local similarities between two molecular surfaces
in a reasonable amount of time. The surface point cor-
respondences can then be used to calculate superimpositions
based onpartial rather than global surface similarities. Since
in most ligand-receptor interactions only a certain part of
the ligand or the receptor is involved in the binding, our

Figure 6. Surface alignment of 1THL (red) and 1TMN (blue). (a) and (b) display the alignment of the molecular surfaces and structures
respectively based on the detected surface similarity. (c) and (d) show the similar surface regions of 1THL and 1TMN color coded by the
electrostatic potential to illustrate their size and physicochemical similarity.

Table 4. Overlays of DHFR Ligands Performed under Electrostatic
Potential (ESP) Conditions

molecules RMSDa [Å]

A B CPsb pointsc surf. struct

FOL MTX 6 449 1.36 1.23
TMP 3 215 1.32 1.90
WRB 4 257 0.99 1.26

MTX TMP 4 216 0.64 1.63
WRB 3 181 1.11 5.82

TMP WRB 5 312 1.28 1.74

a Root mean square deviation.b The number of critical points that
build the cluster for that overlay.c Specifies the number of all surface
points in the patches that were used to calculate the surface alignment.
This number indicates the size of the similar surface region (higher
number: larger region).
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method can provide important insights into the mechanism
of receptor binding even if the structure of the binding site
is unknown.

The representation of the results as a hierarchical cluster
of subalignments allows a deep insight into the nature of
the similarity between the two molecules. On the way from
the largest down to the smaller alignments one can easily
identify the similar surface regions that reveal a good picture
of the important stereochemical surface patterns (Figures
6-8).

With our approach it is possible to compare two surfaces
using their shape and physicochemical properties at the same
time. The results therefore represent a simultaneous match
of geometry and chemistry which gives a deeper insight into

the molecular analogies than shape alone. The filter based
procedure also provides a very flexible framework that can
be adapted to a large variety of surface similarity problems.

Although the results presented here were obtained using
only ESP and LP mapped onto the molecular surfaces, it is
straightforward to use other relevant physicochemical prop-
erties such as hydrogen bonding donor/acceptor parameters
within the same framework. This could be implemented
either for the whole surface as described by Exner et al.16 or
for each single site as proposed by Raevsky et al.41,42

Our method is currently applicable to rigid molecular
conformations only. However, as the comparison runs
reasonably fast, it is possible to combine it with a confor-
mational analysis and scan a set of low-energy conformations

Figure 7. Surface alignment of 1TLP (red) and 6TMN (blue). (a) and (b) display the alignment of the molecular surfaces and structures
respectively based on the detected surface similarity. (c) and (d) show the similar surface regions of 1TLP and 6TMN color coded by the
electrostatic potential to illustrate their size and physicochemical similarity.

Chart 2. 2D Structures of Four DHFR Ligands
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of each molecule as expected from a complete 3D molecular
similarity analysis.

In addition to the investigation of the relative configura-
tions of ligands within a specific binding site, presented in
this publication, the method may be useful in the context of
other molecular modeling problems. With only minor
adaptations it will be possible to compare the surface of
proteins or parts of proteins with each other on the same
time scale. This could help to reveal the structural similarities
between functionally related proteins that do not show
significant structural similarity.

Together with conformational analysis, the method could
be applied to predict a common binding mode in an unknown
receptor if a set of active compounds is known. This binding
mode could be represented as the largest common set of
similar patches on all surfaces of the data set. From such a
set it should be straightforward to define a surface model
that could be used to search structural databases for similar
compounds or serve as input to a QSAR methodology. In
combination with efficient scoring functions our method
could thus be used to search a large set of molecules for

similarities that are not discovered by conventional structure
similarity algorithms.
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