
Parallel Global Optimization

of High-Dimensional Problems

Siegfried Höfinger, Torsten Schindler, and András Aszódi

Novartis Forschungsinstitut,
Brunnerstraße 59, A-1235 Vienna, Austria

{siegfried.hoefinger,torsten.schindler,andras.aszodi}@pharma.novartis.com
http://www.at.novartis.com/healthcare/nfi/default.asp

Abstract. A parallel version of an optimization algorithm for arbitrary
functions of arbitrary dimension N has been developed and tested on
an IBM-Regatta HPC system equipped with 16 CPUs of Power4 type,
each with 1.3 GHz clock frequency. The optimization algorithm follows
a simplex-like stochastic search technique aimed at quasi-complete sam-
pling of all the local minima. Parallel functionality is incorporated with
the Message Passing Interface - MPI - version 1.2. The program is ap-
plied to typical problems of dimension N=60 and N=512 and the results
are analyzed with respect to operability and parallel scalability.

1 Introduction

Many practical problems in science and technology are theoretically solvable
but practically intractable because they require too long a computation. Com-
puting time becomes a limiting factor particularly in mathematics and physics,
where for certain problems the underlying basic principles defining the prob-
lem are well-known. However, they often lead to so many equations, or boost
the dimensionality of a mathematical space so drastically, that a resulting com-
putational procedure is hindered from successfully deriving a solution within
an acceptable time frame. On the other hand supercomputers steadily increase
in power and scope. Thus the aforementioned limitations may be overcome by
high-performance computing systems and parallel architectures.

In this present study we investigate a general search algorithm that is usu-
ally applied to finding an optimum point - a minimum - on a highly complex
functional surface. This minimum represents the behaviour of a particular N-
dimensional scalar function fN (x1, x2, x3, . . . xN) with respect to variations of
the function’s arguments x1, x2, x3, . . . xN . Thus for the 2-dimensional case one
could imagine a typical picture of a geological relief. A path in the (x1, x2) plane
allows us to follow the rise and fall of the function’s values on f2(x1, x2) the sur-
face of the landscape. The goal of the search algorithm in such a case is to discover
the positions of valleys and related valley base altitudes, finally picking out the
optimal point with minimum geographical altitude. The problem with this ap-
proach immediately becomes clear even with this simple-minded 2-dimensional

D. Kranzlmüller et al. (Eds.): Euro PVM/MPI 2002, LNCS 2474, pp. 148–155, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Parallel Global Optimization of High-Dimensional Problems 149

example. It is difficult to determine the global optimal point because the algo-
rithmic procedure should on the one hand try to detect valleys, but on the other
hand also try to escape from these local valleys again once they are detected.
This is because a local solution need not necessarily be a globally optimal point
but the search for the latter is the ultimate goal of the algorithm. Furthermore,
the situation becomes worse with increasing dimension N because the number
of theoretical local minima grows exponentially also with N. For a real-world
problem where N is of the order of 1000 or more the problem therefore becomes
CPU bound.

In this paper we present a parallel application that performs the search for
various local minima in parallel. In section 2 we outline the basic principles
of direct search methods like the simplex optimization and their suitability to
parallelization. The procedure is applied to a model test in section 3 and the
results are analyzed in section 4.

2 Direct Search Methods – Simplex Optimization

One of the easiest methods to detect minima on a given functional surface is the
simplex-method of Spendley, Hext and Himsworth [1] which was subsequently
extended by Nelder and Mead [2]. The advantage of this particular method is
that there is no need for gradient information, ∇fN , of the function under con-
sideration. As in a trial-and-error method one starts by setting up a set of N+1
non-identical points and computes corresponding functional values for these and
subsequently rearranges all these N+1 positions in a well-defined way. The ul-
timate objective is to move the set of points closer and closer to the minimum.
The idea of the Nelder and Mead algorithm is to successively improve the set
of points by always searching for the least optimal point, i.e., the one with the
highest functional value. This point is then moved using a geometrical trans-
formation, specifically by a reflection through the centroid of all the remaining
points in the simplex.

As pointed out by Torczon [3], the Nelder and Mead extension of the simplex-
method exhibits the phenomenon of restricted convergence. This basically means
that if the requested accuracy of the solution is too great the method fails to find
the minimum. As a possible solution to this problem Torczon herself suggested
the implementation of Parallel Multi-Directional Search (PMDS) [4]. Within the
PMDS framework the way of improving the set of points forming the simplex is
different to that of Nelder and Mead. The first major difference is the selection
of the best adapted point for use as the centre of reflection, i.e., the point having
the smallest functional value and therefore closest to the desired minimum. Sec-
ondly, all the remaining N points are then reflected through this selected centre,
which is a process that may, in principle, be performed in parallel, hence the
parallel character of this new simplex variant. However, according to Bassiri and
Hutchinson [5], the phenomenon of restricted convergence was not eliminated by
employing PMDS. This formed the motivation for the latter authors to devise
an alternative method for performing the different moves during stepwise alter-

150 Siegfried Höfinger et al.

ation of the set of points which comprise the simplex. Note that another way of
discriminating the various methods is to look at the number of points that are
involved in the update of the simplex. Whereas in the early methods only one
point was selected and became subject to geometric operations, in the second
set of methods starting with PMDS, all points but one (the one with smallest
functional value) were chosen and shifted around according to the employed set
of geometric rules.

For the present purposes we will use the set of simplex-update-rules specific
to the PMDS approach, which all are exhaustively defined from

p∗i (x1, x2, x3, . . . xN) = (1 + t)pl(x1, x2, x3, . . . xN) − tpi(x1, x2, x3, . . . xN) (1)

update-rule t-setting application pre-condition
reflection t = 1 not converged, standard operation
expansion t > 1 one point of the reflected set gives rise to an even

smaller fN than current optimum
contraction 0 < t < 1 reflection fails to produce any point with fN smaller

than the current optimum

where pi refers to one particular point of the N+1 points forming the simplex; pl

represents the only stationary point having the lowest functional value, and t is
a parameter following the tabular description given above.

2.1 Enhancements towards Global Search

The procedure outlined in section 2 does not find a globally optimal point.
It merely enables the local minimum lying next to the initial simplex to be
discovered. Therefore additional features need to be established to enable the
search for an overall optimal point. We suggest the following implementation:

– Use a regular simplex and standard simplex moves. Use the simplex moves
only for translocation on the functional surface.

– At all the N+1 points defining a simplex employ independent local min-
imizations. The minimizations of these N+1 points are independent tasks
and may be done in parallel.

– The resulting N+1 local minima are stored.
– Screen the list of detected local minima for unique entries as well as for

new-coming entries to monitor the progress of the global search.
– Standard simplex-termination would occur when all the N+1 points define

roughly the same position (a minimum - local or global). When this happens
in the global search, all the N+1 points are re-initialized and the simplex
starts afresh.

– The global search terminates if no new local minima are discovered even
after several simplex re-initialization steps.

– Pick the point with smallest fN from all the recorded unique local minima
as the likely global minimum.

Parallel Global Optimization of High-Dimensional Problems 151

2.2 Parallel Aspects

From the profiling of a typical example with N=60 we could estimate the relative
CPU-load for the isolated local minimization step to be of the order of 99.98 %.
Thus within this context it was just a natural consequence to develop a par-
allelized version of the algorithm, described in section 2.1, that could perform
the local minimization step at all the N+1 positions of the simplex in parallel.
A straightforward solution was to split the N+1 local minimization steps into
fractions, that could then be distributed over parallel operating CPUs.

The parallel algorithm is characterized as having very short communication
intervals on the one hand and long lasting, independently operating parallel in-
tervals on the other hand. The communication overhead is mainly due to sending
the N+1 simplex coordinates to all participating parallel nodes and receiving the
N coordinates of corresponding minima back from the parallel nodes. Compared
to the time the individual nodes have to spend on computing their own sets
of local minima this communication time is to a great extent negligible. The
application inherent characteristics form the basis for an efficient parallel imple-
mentation using MPI. A master-node scheme was therefore adopted, where the
master-process was responsible for all simplex-related organizational work, and
the node-processes were due to local minimization jobs. Master ”send” opera-
tions included sending of the N+1 points forming the current simplex to each
of the nodes, while the nodes would just work on a predefined subset of these
N+1 items and send back the computed corresponding local minima. Therefore
there was no need to invoke higher level collective communication operations.
We simply could get by with broadcasting buffered messages of length N+1 and
receiving buffered messages of identical length via specific node-master sends.

For incorporation of parallel features the Message Passing Interface [6]
seemed to be the most appropriate. This is because of the small additional
programming efforts we had to undertake in obtaining a parallel version from
modifying the already existing (and functional working) serial code. Further-
more, the target multiprocessor machine we had in mind for evaluation pur-
poses was already equipped with a proprietary version of MPI-2 including FOR-
TRAN 90 bindings (IBM parallel environment for AIX, version 3, release 2).
Another important aspect when choosing MPI as the communication protocol
was portability, since the described application is still being further developed
and the number of available parallel architectures within our research institute is
steadily growing. Regardless what parallel environment will finally become our
target, the 16-CPU SMP IBM-machine appeared to better perform with MPI
than PVM for comparable parallel tasks.

3 Results

A MPI-parallel version of the global simplex-like search algorithm described in
section 2.1 was derived from the serial variant written in FORTRAN 90. A rather

152 Siegfried Höfinger et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

To
ta

l E
xe

cu
tio

n
Ti

m
e

[s
]

Number of Parallel Processing Elements

Fig. 1. Parallel performance of a simplex-like global search algorithm for a N=60
dimensional test function. This example is explored over 100 successive simplex
cycles. The parallel architecture was an IBM-Regatta SMP system with 16 CPUs
of type Power4 (1.3 GHz)

complicated test function [7],

fN (x) =
i=N/2∑

i=1

a x2
2i−1 + b x2

2i + c cos(α x2i−1) + d cos(γ x2i) − c − d (2)

with a = 1.0, b = 50.0, c = 3.0, d = 4.0, α = 3π, γ = 4π has been used for all the
test runs analyzed below.

At first the dimensionality was chosen to be N=60 and then a 100 cycle
simplex-like global search procedure was invoked and the execution time mea-
sured on a single Power4 CPU (1.3 GHz) of a SMP 16-node IBM-Regatta server.
The identical test calculation was repeated with successively increasing numbers
of parallel processing elements (finally reaching 15 nodes). The master process
itself accounted for a separate single CPU. A graphical representation of the re-
sults is given in Fig. 1. The resulting speed-up using 15 processors was 12.7-fold.

In addition a second run was set up where the dimensionality of the problem
was increased to N=512 and the code executed on all available 16 CPUs of the
parallel machine. Here the aim was to measure the number of newly-identified
local minima in the course of the global search. Fig. 2 shows the percentage of
the N+1 simplex points that led to newly identified local minima throughout
the first 10 iteration steps.

4 Discussion

A typical simplex reflection move is demonstrated on a 2 dimensional example
case in Fig. 3. As explained in section 2 there are 2+1 points involved and if

Parallel Global Optimization of High-Dimensional Problems 153

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Fr
ac

tio
n

of
 N

ew
ly

-D
et

ec
te

d
Lo

ca
l M

in
im

a
[%

 o
f N

]

Simplex Iteration

Fig. 2. Rate of de-novo identification of local minima in the course of iterative
simplex moves with following local minimizations for a N=512 dimensional test
case

we follow the PMDS-strategy according to Torczon we move all points but one.
The point that remains unchanged is the one having smallest functional value f2

from the first, which is the boundary point of the two triangles in Fig. 3. Next we
apply local minimization steps at all the various simplex positions. This leads us
to the closest local minimum, which is illustrated by the zigzag-pathways in the
contour plot of Fig. 3. This must be considered as the major difference to other
existing global search methods. First of all we do not feed back the information of
positions of local minima to the subsequent simplex-moves. The detected local
minima are just stored and screened for new values. This gives us an idea of
the progress of the global optimization process. Secondly, we perform the local
minimization jobs, which all are independent tasks, in parallel. In particular we
apply a minimization procedure similar to the one outlined in [8]. The important
thing to realize with this method is that it is a gradient-free technique and that
it employs the well-known Powell method of local minimization.

In the beginning of the procedure and when all the local minima coincide
we initialize the simplex. For this purpose we define one point randomly. Based
on this random point a new regular simplex is formed with randomly chosen
edge-length.

Parallel scaling exhibits a non-optimal behaviour with large numbers of
CPUs. For example as seen from Fig. 1 increasing the number of CPUs from
10 to 11 actually results in slow-down instead of speed-up. However this is due
to the fact that we have chosen a 60-dimensional case. There is no optimal way
of splitting a group of 60 elements into equal-sized portions of 11 fractions. So
for example in such a case we have to employ 8 CPUs with 5 minimizations, and
always 1 CPU with 6,7 and 8 minimizations, which is certainly shifting the bot-
tleneck to the process dealing with 8 minimizations. Therefore the best parallel
performance is observed in situations where 60 may be divided through the num-

154 Siegfried Höfinger et al.

Fig. 3. Simplex reflection move illustrated with a 2 dimensional example. From
the 2+1 simplex points the one with smallest f2 is held constant, while the
remainder are reflected through this very point. In the contour plot we also
indicate the following local minimization steps

ber of CPUs (see Fig. 1). Furthermore according to Amdahl’s Law, with a serial
fraction of 0.0002, we should see a much higher degree in parallel speed-up. For
example using 12 CPUs we should theoretically obtain a factor of 11.97x but
see 10.32x instead. The reason for this is that different local minimization steps
may last differently long depending on how far away the point we start with is
actually located from the next local minimum.

There is a characteristic drop in the number of newly detected local minima
every second step of the simplex moves (see Fig. 2). This is the effect of closer
related simplex-point-positions for expansion and contraction moves which both
follow the standard reflection move. So what we see in Fig. 2 is the effect of
alternating reflection and contraction/expansion moves from which only the first
type always leads to a completely different set of positions (also compare to
Fig. 3). In addition we report that the N=512 example needed more than 3 full
16xCPU-days to complete the initial 10 iterations which is far from exhaustive
exploration of the entire functional surface.

5 Conclusion

A new global search algorithm has been presented here in which ”simplex-like”
moves are followed by local minimization steps. The advantage with this new
method is that a robust and well-established technique (simplex) is combined
with additional local minimization-refinements that may be efficiently performed
in parallel. While the current implementation works on a mathematically well
defined analytical test-function, the concept may be easily generalized to ex-

Parallel Global Optimization of High-Dimensional Problems 155

plore any arbitrarily complex potential surface. Such minimization problems are
often encountered in rational drug design, in particular in the analysis of con-
formational preferences of small molecules. Another possible application area is
the computational study of ligand-receptor interactions (docking) that has the
potential of speeding up the lead optimization stage of the drug discovery pro-
cess. Work is currently underway in our laboratory to explore these application
opportunities where the speed-up provided by parallelization offers a significant
methodological advantage.

Acknowledgment

The authors would like to thank Dr. Adrienne James for helpful discussions and
Dr. Pascal Afflard and his colleagues at Novartis Basel for granting access to
their computing facilities.

References

[1] Spendley, W., Hext, G.B., Himsworth, F. R.: Sequential application of simplex
design in optimisation and evolutionising operation. Technometrics 4 (1962) 441
149

[2] Nelder, J. A., Mead, R.: A simplex method for function minimization. Comp. J.
(1963) 308 149

[3] Torczon, J. V.: On the convergence of the multi-directional search algorithm.
SIAM J. Optimization 1 (1991) 123–145 149

[4] Torczon, J.V.: Multi-Directional Search: A Search Algorithm for Parallel Ma-
chines. PhD thesis, Rice University, Houston, Texas (May 1989) 149

[5] Bassiri, K., Hutchinson, D.: New Parallel Variants on Parallel Multi-Dimensional
Search for Unconstraint Optimisation. research report 94.28, Div. of Computer
Science, University of Leeds, UK, (1994) 149

[6] Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message Passing Interface. 2nd edition. MIT Press, Cambridge, MA,
(1999) 151

[7] Dennis, S., Vajda, S.: Semiglobal Simplex Optimization and its Application to
Determining the Preferred Solvation Sites of Proteins. J. Comp. Chem. 23, 2
(2002) 319–334 152

[8] Brent, R. P.: Algorithms for Minimization Without Derivatives, Chapter 7. Dover
Publications, Mineola, New York, 0-486-41998-3, (2002) 153

	Parallel Global Optimization of High-Dimensional Problems
	Introduction
	Direct Search Methods -- Simplex Optimization
	Enhancements towards Global Search
	Parallel Aspects

	Results
	Discussion
	Conclusion

