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Gene products differentially expressed in healthy vs. diseased tissues may be considered drug
targets since the change in their expression level can be related to the cause and progression of the
disease studied. A significant portion of the proteins produced by these genes will be unknown and
consequently their function must be characterised. The experimental elucidation of biochemical
function must be supported by computational tools which can help predicting the possible function
of a given protein from its amino acid sequence. We have designed a high-throughput system which
automatically analyses amino acid sequences deduced from differentially represented cDNA clones.
The system attempts to assign a biological function to protein sequences by carrying out searches in
sequence databanks and by locating functionally relevant motifs in the query sequences. The results
delivered by the various prediction methods consist of the annotations of matching sequences and/or
motifs, which are free-format texts written by humans and therefore may describe the same concept
with synonymous words. It is desirable to present the results in such a way that the annotations
describing the same biological function are grouped together. To this end we devised an algorithm
that enables the hierarchical clustering of free-format documents based on their contents. The
system is capable of detecting and flagging conflicting annotations, and will speed up the
interpretation of the function prediction results.

Introduction

Protein function prediction methods are based on the observation that functional
similarities can often be deduced from amino acid sequence similarities.
Functionally related proteins usually show homology in their sequences that can be
detected by various databank search methods employing sequence alignments. The
biological function can also often be predicted from the presence of shorter “motifs”
or “signatures” in the sequences consisting of conserved patterns of amino acid
residues even if the overall homology is low. If a pattern matching method detects a
similarity between the query sequence and another known sequence already
annotated in a data bank (a “hit”), then one can transfer the function of the hit from
its annotation to the query sequence. Intuitively, if several methods deliver the same
functional annotation then we can have a higher confidence in the results. This
approach is obviously not foolproof, as e.g. two proteins may share the same
function in the absence of any detectable similarity, or similarities may be present
even if the proteins have completely unrelated function. In spite of these difficulties
the computational prediction of protein function is an extremely valuable tool that
complements the experimental efforts geared towards the understanding of
biological processes at the molecular level.

A project aimed at identifying genes differentially expressed in healthy and
diseased tissues is currently underway in our Unit. The proteins coded for by these
genes may serve as therapeutic targets as the changes in their expression levels could
be related to the cause of the disease in question. In order to choose promising drug
targets it is essential that information about the biological function of these proteins
is available. Due to the large number of differentially expressed clones it would be
impossible to perform detailed experimental studies on each of the corresponding
gene products and a high-throughput computational prediction system is needed to
assign probable function to as many of these gene products as possible.

We have constructed a protein function prediction pipeline that employs a
number of independent pattern matching methods in parallel to increase the
sensitivity and reliability of function predictions by delivering as many hits to a
query as possible. If the annotations of these hits were simply presented in a list,
then it would remain the task of a human expert studying the results to evaluate the
annotations and come up with a consensus prediction. Given the large number of
sequences processed by the pipeline, this procedure is tedious and error-prone. There



is a clear need for a post-processing step that can group those annotations together
that describe essentially the same biological function with different words and at the
same time highlights annotations that fall into different groups. Both tasks can be
accomplished by a system that is capable of clustering free-format documents based
on their content. This is a key problem in information retrieval applications
extensively discussed in the literature (for an overview, see e.g. Schatz, 1997). We
have built a prototype system that can cluster protein data bank annotations avoiding
any human bias using an automatically constructed knowledge base of biomedical
concepts.

Methodology

The Prediction Pipeline

The function prediction system was designed as a pipeline containing four stages,
namely DNA similarity searches, DNA � SURWHLQ� WUDQVODWLRQ�� SURWHLQ� VLPLODULW\
searches and annotation (Figure 1). The input of the pipeline consists of sequences
of cDNA clones identified as “differentially expressed”. Every cDNA sequence
entering the prediction pipeline is first scanned against the GenBank, EMBL and
TAGS databanks using the gapped BLAST2 algorithm (Altschul et al, 1997) as
supplied in the GCG package (Version 10). If a match with a probability less than
10-50 is detected, the gene is considered “not novel” and removed from the pipeline
as such probabilities indicate a mismatch of a few bases only. Matches with
probabilities between 10-10 and 10-50 occur for DNA sequences which are similar
enough to some sequence(s) so that a direct functional prediction based on DNA-
level similarity is possible but they are not identical to these hits and therefore may
be considered “novel”. Any other sequence for which no good matches with
annotations were found enter the protein prediction stage.
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Figure 1. Schematic flow diagram of the function prediction pipeline. The cDNA
sequences (possibly more than one per clone) enter the pipeline at the top and will
be used as queries in a number of nucleic acid database searches with BLAST.
Sequences with no significant matches or with matches to genes of unknown function
will be translated into protein sequences and enter the protein prediction stage
(below the thick broken line). The results of the various similarity searches and
simple structure predictions are then merged into the output.

We perform FASTA searches (Pearson and Lipman, 1988) against the protein
data banks SwissProt and PIR with our translated amino acid sequences to get
matches possibly missed by the BLAST searches at the DNA level and to extract
additional information from the protein databank annotations. The protein domain
data bank PRODOM (Corpet et al, 1998) is also searched to simplify function
assignment when the query sequence has FASTA matches against a number of
different protein families. For queries with a few good databank matches we try to
identify other sequences belonging to the same family by performing an iterative
search inspired by the “SYSTERS” approach by Krause and Vingron (1998). This
method is essentially a “walk in sequence space” (Holm, 1998) whereby the first
search generates a few matches and then the closest match above a probability
threshold (usually 10-30) is selected to pull in more related sequences which had no
easily detectable similarity to the original query. The process is repeated until a
compact cluster of related sequences is found.

Functional clues can often be gained from detecting relatively short,
characteristic sequence segments in proteins which occur in all members of the same
functional family. Currently the following motif search methods are included in the
prediction pipeline: the MOTIFS program that searches the PROSITE database of
flexible patterns (Bairoch and Bucher, 1994), the PROFILESCAN method of
Gribskov et al (1987), both implemented in the GCG package, and the hidden
Markov model engine as implemented in the HMMER package (version 2.0, see



Eddy, 1996). These methods are complementary not only in the sense that they are
based on different algorithms, but that they search different (albeit partially
overlapping) motif collections. These methods are very flexible in that they enable
the definition of new motifs. Work is currently under way to build an in-house motif
library of protein families which might serve as interesting targets.

In addition to the similarity search methods described above, our system
contains a few simple structure prediction methods. These algorithms do not build
complete three-dimensional structural models but only predict certain structural
features. We wrote a program that implements von Heijne’s transmembrane helix
prediction program (von Heijne, 1992), adapted to the requirements of the high-
throughput pipeline. Detection of coiled coils is accomplished by invoking the
CoilScan program (Lupas et al, 1991) from the GCG package and by using a freely
available version of the MultiCoil program (Wolf et al, 1997). Although these
programs provide only indirect evidence to function, they can still be useful in
characterising the protein in question.

Most of the programs described above generate copious output which quickly
becomes totally incomprehensible if a large number of sequences are analysed. The
raw output of the prediction programs are therefore parsed into a hierarchical
scheme of HTML files. While this post-processing step enables easy visualisation
via Web browsers, additional support is needed for condensing the raw information
and presenting a useful summary. This can be achieved by document clustering as
described below.

Overview of Annotation Clustering

Once we are able to measure the similarity of any two documents, then appropriate
clustering algorithms are available that can cluster the documents efficiently
according to the given similarity criteria. A straightforward way to measure
document similarity would be to construct a list of “important” words, the term list,
then for any two documents we would simply check which terms occur in them. If
the same terms occur in both documents then they probably refer to the same
concept.

This naïve algorithm would be sufficient if every term in the term list
corresponded to only one distinct concept in the documents. However, biomedical
texts often describe the same entity with several synonymous words. For example,
the molecule Apo-3, a member of the tumor necrosis factor receptor family, is also
known as DR3, WSL-1, TRAMP or LARD (Kitson et al, 1996; Marsters et al,
1996). Moreover, there is an intricate network of semantic relations between
biological concepts. To compare biomedical documents or annotations efficiently,
we would ideally like to grasp at least some of these conceptual relations. To use the
above example, the multiply-named Apo-3 molecule plays a role in apoptosis and
contains a feature called the “death domain”. An expert will of course know that the
terms “apoptosis” and “programmed cell death” describe the same concept, and that
proteins containing the “death domain” play a role in apoptosis. Consequently, if
one document contains the term “apoptosis” and another contains the term “death
domain”, the third “Apo-3” and the fourth “WSL-1”, then they may very well be
related, even if they do not have any terms in common.

The appropriate similarity criterion between two documents can then be
formulated as follows:- “Two documents are similar if they contain terms which are
related to the same biomedical concept.” Consequently a simple term list is not
enough for the detection of document similarity; the terms in the list must be
clustered first into term clusters representing biomedical concepts. These term



clusters need to be constructed only once. Two documents can then be compared by
checking which terms occur in them, and to which term clusters these terms belong.
If both documents contain terms belonging to the same term cluster, then the
documents probably describe the same phenomenon and may be clustered together.

Automatic Construction of Term Clusters

Our primary term list was a compilation based on the SwissProt data bank keyword
list (Bairoch and Apweiler, 1997), and the functional hierarchy of biomolecules in
the InCyte data bank. The final term list contained about 900 multiword terms
describing proteins, molecular and cellular processes. Stopwords having a very
unspecific general meaning such as “protein” or “metabolism” that may occur in a
wide variety of contexts were filtered out before the term list construction.

Two terms were considered related if they were often found together in Medline
abstracts (the “co-occurrence criterion”). Batch Medline searches were conducted
with all entries in the term list and a maximum of 1000 documents were returned for
each term, 711887 in total. The set of these Medline records comprised the
document training set. Next, for each term a list was constructed that contained the
other terms co-occurring with that given term, sorted such that the most often co-
occurring term was the first in the list. Term cluster building began with the first
term T1: it became the first term cluster together with its most often co-occurring
term T2. Then the co-occurrence list of T2 was investigated: if its most often co-
occurring term was the first term T1, then the cluster was finished. If, however, the
term that most often occurred together with T2 was T3, then T3 also became the
member of the cluster and the search continued with its co-occurrence list until no
appropriate new terms were found. If two terms had the same co-occurrence value
then both were followed up the same way (Figure 2).
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Figure 2. The term clustering algorithm. The co-occurrence matrix contains the
probabilities with which two terms are contained in the same document, e.g. the
entry for the pair T1/T2 is 2/4, meaning that T2 occurs together with T1 in 2 out of 4
documents. For each term, another term with the highest co-occurrence probability
is identified and term clusters are constructed such that terms often occurring
together will end up in the same cluster. See text for more details.

Since a given term may carry a different meaning in a different context, terms
were allowed to be members of different term clusters. The term clusters were
“fuzzy”, i.e. each term had a membership probability between 0 and 1.

The probability Pr of term Tx co-occuring with term Ty is:
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whereby NCk(Tx) is the number of term Tx occurring in term cluster k.

Measuring Document Dissimilarity

The comparison of two documents began with finding those terms that occurred in
them. The words in the documents were stemmed before term matching using the
Porter algorithm (Porter, 1980). The original algorithm was adapted so that words
shorter than five characters or ending in numbers should not be stemmed, e.g.
“CD40” should not be stemmed to “CD”.

The match score Match(k,d) for a term cluster k in document d was defined as
the maximum of the PCk(Tx) scores of its individual terms matching the document.
In the example of Figure 3, term cluster TC1 matches the first document D1 through
term T1, and document D2 through terms T2 and T3. The score of TC1 in D1 is the
probability of T1 belonging to the cluster TC1, while the score of TC1 in D2 is the
larger of the probabilities of T2 and T3 in TC2.
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Figure 3. Document comparison with term clusters. Document D1 contains term
cluster TC1 through term T1 and term cluster TC2 through term T4, while document
D2 contains TC1 through T2 and T3 and TC2 through T5 (term-document matches are
indicated by the dots). The documents are considered similar even though there is
no term that occurs in both. See text for details.

Formally,
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where N is the number of all term clusters, and Nmatch is the number of term
clusters that had a match in at least one of the documents. We used the
normalization factor Nmatch because most documents contained hits to only a few
term clusters and the fact that lots of term clusters were not present in either of the
documents did not imply that the documents were similar.

Hierarchical Clustering of Documents

In order to cluster a collection of documents, a distance matrix was constructed that
described the pairwise dissimilarities between the individual documents. Standard
algorithms are available that, given a distance matrix for a set of objects, can cluster
them into hierarchical groups, such as single linkage, complete linkage, average,
McQuitty’s method, centroid etc. After initial tests we decided to use Ward’s
algorithm (Ward, 1963) as implemented in the R statistical package
(http://lib.stat.cmu.edu/R/CRAN) that constructs clusters in such a way that the
intercluster variance is maximised, while the intracluster variance is minimised. This
ensures the construction of compact, well-separated clusters.

Results and Discussion

The Term Clusters

The clustering of our term list provided a set of 400 term clusters. Inspection of the
results confirmed that the method was indeed capable of grouping the terms such
that these represented general biological concepts. A few example clusters are listed
below (Table 1).



Table 1. Three representative term clusters. The individual terms are shown
together with their respective cluster membership probabilities PC(T).

Cluster 306 PC(T)
RIBOSOMAL+PROTEIN 0.408

TRANSLATION+REGULATION 0.140
Ribosome 0.278

INITIATION+FACTOR 0.513
Translation+initiation+factors 0.410

Cluster 332 PC(T)
PHOSPHOLIPID+BIOSYNTHESIS 0.244

GM2+GANGLIOSIDOSIS 0.038
PHOSPHOLIPID+DEGRADATION 0.410

LIPID+METABOLISM 0.845
LIPID+DEGRADATION 0.918

SPHINGOLIPID+METABOLISM 0.129
LIPID+BINDING 0.527

Cluster 385 PC(T)
Chromatin 0.355

SPLICEOSOME 0.132
MRNA+SPLICING 0.649

RIBONUCLEOPROTEIN 0.269
ALTERNATIVE+SPLICING 0.527

Splicing+factors 0.187
NUCLEOPROTEIN 0.549

Document Clustering

The performance of the document clustering method was tested as follows. We
chose 23 Medline abstracts on the topic of “hemoglobin” (the “circle” documents),
46 documents (“arrows”) on the topic “oxygen transport”, which is obviously related
to “hemoglobin” and 10 abstracts about the unrelated topic of “tyrosine kinase” (the
“diamond” documents). These documents were then clustered using our method and
the clusters were displayed graphically (Figure 4). The documents were separated
into two distinct clusters: one containing exclusively “diamond”, and another one
containing a mixture of “circle” and “arrow” documents. The appearance of the
mixed cluster was expected due to the relatedness of the concepts “hemoglobin” and
“oxygen transport”. The second cluster is splitting again in two clusters: one mixed
“circle/arrow” and one “clean arrow” cluster reflecting the fact that the concept
“hemoglobin” implies “oxygen transport” but the opposite is not true.



Figure 4. Clustering of documents containing the concepts “tyrosine kinase”,
“hemoglobin” and “oxygen transport” (diamonds, circles and arrows respectively).
The left bar indicates the dissimilarity score.

We have also measured the distribution of the number of annotation clusters per
sequence processed by the function prediction pipeline. To this end, we post-
processed the raw annotation results for an in-house collection of differentially
expressed genes. Out of 7943 sequences, 2177 had no hits at all, 3024 could be
annotated directly because the annotations could be grouped into one cluster
corresponding to a single concept. The rest of the sequences gave 2 to 8 annotation
clusters, indicating the presence of multiple concepts in the hit annotations (Figure
5). In some cases this was due to conflicting annotations, but the majority of
multicluster annotations simply reflected the fact that the sequence in question could
be described by several biochemical concepts. In particular, covalent modification
sites (phosphorylation signals etc.) tended to build a separate annotation cluster on
their own but these of course were not in conflict with the “main” function
annotation cluster.
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Figure 5. Distribution of annotation clusters. 2177 sequences had no hits in the
prediction pipeline (column “0”). Of the 5766 sequences that produced at least one
hit, the majority (3024, 52%) could be annotated unambiguously because the
annotations could be grouped into a single cluster (column “1”). The number of
multiple annotation clusters then fell off rapidly.

Comparison to Other Methods

The key to reliable protein function prediction from sequence information is to
combine the results of various methods designed to detect sequence similarities. Our



prediction pipeline also implements this paradigm and in this respect it is similar to
several other bioinformatics packages such as GENEQUIZ (see e.g. Casari et al,
1996) that have been developed over the past few years. While the prediction quality
ultimately depends on the underlying sequence analysis algorithms, we felt that
usability and the clear presentation of the results are equally important aspects,
especially in a multidisciplinary environment like Novartis. This need prompted us
to provide an automatic annotation analysis stage before the end user receives the
prediction results.

Automatic processing of annotations by computer is a challenging task due to the
seemingly irregular nature of free-format texts created by human experts. Several
research groups have felt the need to bring some order in this apparent chaos:
Fukuda et al (1998) have designed the algorithm PROPER to extract synonymous
protein names from biological texts. Our term-cluster building approach performs
this sub-task automatically. Andrade and Valencia (1998) extracted keywords
associated with protein families from annotations based on statistical considerations.
Their prototype system, however, needs to be initialised manually, while our
approach is fully automatic and the generation of the term clusters are not linked to
protein families; in fact, given an appropriate primary term list and an example
document database, term clusters can be generated for any kind of knowledge
domain. We feel that the term-cluster based document similarity measurement
technique represents an important step towards the construction of intelligent
biological knowledge data bases (Craven and Kumlien, 1999) by automatically
assigning terms to meaningful biological concepts: a task that until now had to be
performed manually e.g. in the construction of the UMLS system
(http://www.nlm.nih.gov/research/umls/umlsmain.html).

Outlook

The high-throughput function prediction engine presented here can currently process
about a thousand sequences a day. Its flexible architecture enables us to incorporate
new components if necessary, thus keeping up with the latest developments in
algorithm design. The raw search results are post-processed by detecting annotation
similarities based on term clusters which corresponded to known biomedical
concepts rediscovered without any human guidance whatsoever. The query sequence
can simply be annotated to have the function indicated by the hits belonging to the
largest document cluster. If the clustering procedure found only one annotation
cluster then the predicted function for the query is unequivocal. If the annotations
can be clustered into several independent groups then this may indicate that
conflicting matches have been found and a human expert must decide which
annotation group is to be preferred, or that more distinct concepts are needed to
describe the predicted function of the query. Needless to say, the system does not
“understand” biology the same way a human expert would, and due to the fuzziness
of the biomedical concepts its performance cannot be expected to be perfect.

Taken together, the annotation clustering approach provides a very efficient
way of information compression as the expert evaluating the prediction results needs
to check the annotation groups first and he would inspect the individual annotations
only in the case of doubt. This will greatly simplify the tedious work of analysing
annotations and will speed up the identification of novel genes that can serve as
potential drug targets.
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