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Global Fold Determination from a Small Number of
Distance Restraints
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We have designed a distance geometry-based method for obtaining the1Division of Mathematical
tertiary fold of a protein from a limited number of structure-specific distanceBiology 2Division of

Molecular Structure, National restraints and the secondary structure assignment. Interresidue distances
were predicted from patterns of conserved hydrophobic amino acidsInstitute for Medical Research
deduced from multiple alignments. A simple model chain representing theThe Ridgeway, Mill Hill

London, NW7 1AA, UK protein was then folded by projecting its distance matrix into Euclidean
spaces with gradually decreasing dimensionality until a final three-dimen-
sional embedding was achieved. Tangled conformations produced by
the projection steps were eliminated using a novel filtering algorithm.
Information on various aspects of protein structure such as accessibility and
chirality was incorporated into the conformation refinement, increasing the
robustness of the algorithm. The method successfully identified the correct
folds of three small proteins from a small number of restraints, indicating
that it could serve as a useful computational tool in protein structure
determination from NMR data.
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Introduction

Most interactions governing the formation of
native protein structures can be coded in terms of
interresidue or interatomic distances, providing a set
of internal coordinates that can be processed
conveniently by distance geometry methods in
simulations. On the experimental side, the impres-
sive development of NMR spectroscopy now enables
the determination of the molecular conformation of
small proteins in solution. Structural information
from NMR experiments comes in the form of
distance restraints (i.e. acceptable interatomic
distance ranges flanked by lower and upper
bounds), usually estimated from 2D NOE spectra.
Plausible conformations that conform to these
distance restraints can be generated by a wide
variety of computational tools (Kuntz et al., 1989;
Havel, 1991; James, 1994), most of which fall into one
of the broad categories of restrained molecular
dynamics and distance geometry methods. The latter
are natural candidates for the NMR structure
determination problem, since they enable the
simultaneous satisfaction of all distance restraints in

addition to the holonomic constraints (bond lengths,
angles, etc.) imposed upon the structure and
generate model conformations that are compatible
with the information obtained from the experiments.
Frequently a hybrid approach is chosen whereby the
distance geometry program generates a family of
plausible structures that can then be refined by
molecular dynamics simulations.

The route from the raw NMR spectra to the
Brookhaven databank is often tortuous: the distance
restraints may be insufficient, too lax or inconsistent.
Robust algorithms are needed that can produce
adequate global folds even if the restraints are not
tight or there are just a few of them. A theoretical
analysis of the minimum number of restraints
necessary for a successful structure determination,
based on statistical mechanics, was carried out by
Gutin & Shakhnovich (1994). Smith-Brown et al.
(1993) folded various protein chains by a Monte
Carlo method guided by a small amount of distance
restraints, while Hoch & Stern (1992) compared a
restrained molecular dynamics optimisation with
the classic distance geometry protocol (Crippen &
Havel, 1988). Their results suggest that it is possible
to design reasonably robust methods that can locate
the correct fold using a small amount of distance
information. Similar conclusions have been drawn
when the problem has been approached from a

Abbreviations used: 2D and 3D, two- and
three-dimensional; NOE, nuclear Overhauser effect;
PDB, Protein Data Bank.
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structure prediction viewpoint (Taylor, 1993; Dan-
dekar & Argos, 1994).

We have shown that model polypeptide chains can
be folded into compact three-dimensional confor-
mations possessing a hydrophobic core and
secondary structure using distance geometry tech-
niques (Aszódi & Taylor, 1994a,b). The model chains
were random 1:1 copolymers of ‘‘hydrophobic’’ and
‘‘hydrophilic’’ monomers, and the interresidue
distances were set according to the hydrophobicity of
the residue pairs. Although the chains folded into
protein-like conformations, they could not be
regarded as models of any particular protein. A
logical extension of these studies was to make the
simulations more realistic by modelling the polypep-
tide chain more accurately and by supplying external
distance restraints to the program. In order to
increase the robustness of the algorithm, a
considerable amount of background information
about various aspects of protein structure such as
hydrophobic packing, interresidue distance distri-
bution, general topological properties and chirality
was incorporated.

Algorithms

The algorithm presented in this work is the
extension of the gradual projection approach
implemented in the program DRAGON-2 (Aszódi &
Taylor, 1994b) and the core algorithm remained
essentially the same. To avoid repetition, only the
additions and improvements to the method are
described below.

Strategy

The objective of our calculations was to simulate
the determination of the structures of small
monomeric proteins by NMR. The following pieces
of information were assumed to be available.

(1) The sequence of the protein.
(2) A set of sequences homologous to that of the

protein to be modelled.
(3) A full assignment of secondary structure

derived possibly from short-range NOEs.
(4) A set of long-range distance restraints in the

form of lower and upper distance bounds between
amino acid side-chains.

The sequence and secondary structure assignment
information was obtained from the Protein Data
Bank (Bernstein et al., 1977). First, a multiple
sequence alignment was constructed that provided
information about the conservation of individual
amino acid residues. The conservation information,
coupled with hydrophobicity data, was in turn used
to predict the distances between those residues for
which no extra distance data were available. These
predicted distances, together with simulated NOE-
derived restraints, were submitted to the gradual
projection algorithm. The number of simulated NOE
restraints was varied to determine the robustness of
the approach. For each restraint set, 25 model

Figure 1. The geometry of the model polypeptide chain.
A, The backbone is built of Ca atoms and the side-chains
are represented by pseudo-Cb atoms corresponding to the
20 natural amino acids. The different chemical identities
are indicated by the different sizes and patterns of the
pseudo-Cb atoms. B, the ith pseudo-Cb atom (open circle)
lay in the plane of the (i − 1)th, ith and (i + 1)th Ca atoms
(filled circles). The distance dab between a Ca atom and its
corresponding pseudo-Cb atom as well as the van der
Waals radii of the pseudo-Cb atoms rb depended on the
amino acid type of the monomer (see Table 1).

structures were generated. The same model chains,
complete with secondary structure assignment and
distance restraint data were also submitted to the
program X-PLOR (Brünger, 1992) and the resulting
model conformations served as controls.

The model chain

The model chain was represented as a linear
heteropolymer of the 20 natural amino acids. The
geometric and physicochemical properties of the
amino acid monomers were described by a set of
attributes as follows.

Chain geometry

The polypeptide chain was modelled by an
a-carbon backbone and single Cb atoms (Figure 1A)
representing amino acid side-chains (‘‘lollipop
model’’, Levitt, 1976). The positions of Cb atoms were
determined by the backbone conformation: the
position of the ith dummy Cb atom was obtained by
reflecting the midpoint between the (i − 1)th and
(i + 1)th Ca atoms through the ith Ca atom (Figure 1B)
as described (Aszódi & Taylor, 1994b). However,
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Table 1. Properties of the model amino acids
Monomer properties

Amino acid rb (Å) dab (Å) H

Ala 1.76 1.53 1.73
Cys 2.03 2.06 0.84
Asp 2.23 2.47 0.03
Glu 2.48 3.11 0.01
Phe 2.79 3.41 1.48
Gly 0.00 0.00 1.27
His 2.61 3.15 0.06
Ile 2.60 2.33 3.46
Lys 2.67 3.44 0.03
Leu 2.60 2.61 2.56
Met 2.61 2.96 0.86
Asn 2.35 2.45 0.01
Pro 2.21 1.88 0.18
Gln 2.57 3.07 0.03
Arg 2.88 4.11 0.00
Ser 1.94 1.89 0.49
Thr 2.25 1.95 0.59
Val 2.38 1.97 2.46
Trp 3.07 3.87 0.74
Tyr 2.88 3.76 0.59

rb is the van der Waals radius of the pseudo-Cb side-chain atom.
dab is the distance between the Ca and pseudo-Cb atoms. H is the
hydrophobicity of the residue according to Levitt.

monomers and the correct 3D chirality was imposed
upon them in a separate refinement stage. The
handedness of helices and the asymmetric twist of
b-sheets were adjusted through the torsion angle
about the main-chain H bonds as described (Aszódi
& Taylor, 1994b).

Interresidue distances

Although the model chain monomers were
composed of two atoms, the position of the fake Cb

atoms were determined by the Ca backbone
conformation and the Ca to centroid separation data,
therefore the model chain could fully be described by
the Ca–Ca distances. These distances, henceforth
referred to as interresidue distances, fell in the
following categories.

(1) ‘‘Hard’’ distances: these were determined by
the protein chain geometry, e.g. the virtual Ca–Ca

bond lengths and distances between residues within
the same secondary structural element and were
assumed to be accurately known.

(2) ‘‘Experimental’’ distances: these were distance
restraints specific to the target molecule and were
assumed to have been supplied by experimental
measurements such as NMR spectroscopy, usually
with less accuracy than the hard distances.

(3) ‘‘Soft’’ distances: this large category contained
all the remaining distances, of which little more was
known than that they fell between the lower and
upper limits determined by the bump distances and
the estimated diameter of the molecule, respectively.

Each category required different treatment, as
outlined below.

Hard distances

One of the few distances that can be predicted with
any certainty is the virtual Ca bond length d1 = 3.8 Å.
The separation between second neighbours is more
variable; in the present study these were set to an
average value of d2 = 6.0 Å (Figure 1B) but allowing
for a moderate wobble of the Ca virtual bond angles
(Aszódi & Taylor, 1994a).

Since the secondary structure assignment was
assumed to be known, the Ca distances derived from
ideal helical and sheet conformations (Pauling &
Corey, 1951a,b; Wako & Scheraga, 1982) were
incorporated into the matrix of desired distances.
Most of these values are fairly constant due to the
strict geometric requirements imposed upon the
protein chain by backbone hydrogen-bonding.

Simulated NOE distance restraints

Simulated long-range distance restraints were
obtained from the PDB structures of the proteins to
be modelled. (Long-range here refers to sequential
rather than spatial separation: in general, only
distances between residues separated by at least five
other residues in the sequence were considered.) All

for each amino acid monomer, the distance between
the Ca and Cb atoms (dab) now corresponded to the
average Ca to centroid distances observed in native
proteins (Table 1). Volume exclusion was modelled by
centering hard van der Waals spheres on the atoms.
For Ca atoms, the van der Waals radius was set to
ra = 2.0 Å, regardless of amino acid type. For the Cb

atoms, the van der Waals radii rb were set so that the
van der Waals sphere had the same volume as the
corresponding side-chain type in native proteins
(Table 1).

Other attributes

In addition to the geometry data described above,
each monomer in the chain had attributes describing
hydrophobicity and conservation. Levitt’s hydro-
phobicity scale (Levitt, 1978) was chosen from the
many scales available (Table 1), but the program can
accommodate any scale provided the values are
shifted so that all of them are non-negative.
Conservation of each residue in the model sequence
was calculated from the multiple alignment as
described below.

Chirality

In all distance geometry-based methods chirality
needs special treatment, since the distance matrices
of a point set and its mirror image are identical. Also,
objects that were chiral in N-dimensional spaces
become achiral in N + 1 dimensions so that
handedness consistency cannot be guaranteed in the
gradual projection method (Aszódi & Taylor, 1994b).
While the ultimate source of structural asymmetry in
proteins is the consistent handedness of the amino
acids, our model chains were built from symmetric
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pairwise distances between these amino acid
side-chain centroids were calculated and those
shorter than a threshold of 5.0 Å were selected. These
selected distances were converted to lower and
upper distance bounds by subtracting and adding
2.0 Å, respectively. In order to obtain an abundant set
of restraints, the threshold was set to 7.0 Å. To
simulate the more realistic experimental case when
the number of long-range NOEs may be rather small,
a variable fraction of randomly chosen restraints
were gradually removed from the basic 5.0 Å
threshold set to produce more and more sparse sets,
following Hoch & Stern (1992). In general, one set
was constructed for a given number of restraints. The
sensitivity of the method to the choice of restraints
was tested by generating 20 different random
datasets containing the same number of restraints for
each target structure.

Soft distances

In previous versions of DRAGON, these virtually
unknown distances were adjusted so that pairs of
‘‘hydrophobic’’ residues should come close together.
This crude model of the hydrophobic effect was
significantly refined in the present program.
Interresidue distances were predicted from the
pairwise conserved hydrophobicity score (Taylor,
1991), based on the assumption that pairs of
residues that are both conserved and hydrophobic,
are likely to be close together in the core of the
molecule.

Sequences homologous to the target sequences
were obtained by searching the SwissProt database
(Bairoch & Boeckmann, 1991) and a final set that
originated from a wide range of evolutionarily
distant organisms showing only a modest level of
homology to the model sequence was selected by
hand. Multiple alignments of these sequences were
generated by the MULTAL algorithm (Taylor, 1988)
as implemented in the CAMELEON package
(Version 3.0C, Oxford Molecular) using the default
parameter setting.

The conservation gi at the ith position of an
alignment of N sequences was measured by the
average of the pairwise similarity scores of all amino
acids in the position:

gi = 2
N(N − 1) s

N − 1

j = 1

s
N

k = j + 1

M(Rij , Rik ) (1)

where Rij is the type of the amino acid in the jth
sequence in alignment position i and M(·, ·) is an
entry in the PAM250 amino acid similarity matrix
(Dayhoff et al., 1978). The similarity matrix was
scaled so that all entries were e0 by subtracting the
smallest entry from all the others. The similarity
score between a gap and any amino acid was always
set to zero. The conservation value was normalised
by the maximal score encountered among the amino
acid pairs:

ci =
gi

maxj<kM(Rij , Rik )
(2)

ensuring that 0EciE1. The pairwise hydrophobic
packing score could then be defined as:

hij = ciHi + cjHj (3)

where ci is the conservation and Hi is the average
Levitt hydrophobicity (Levitt, 1978) of the amino
acids in the ith sequential position. The hydrophobic
scores were converted into predicted distances via
the transformation:

dij = −p1hp2
ij + p3 (4)

where the three parameters p1, p2, p3 > 0 were
estimated by non-linear regression so that the
distribution of the predicted distances matched the
observed interresidue distance distribution in a
representative set of small monomeric proteins
(Aszódi & Taylor, 1995).

Distance adjustments

For hard and soft distance data, the actual values
in the distance matrix were ‘‘massaged’’ towards the
corresponding desired values by a convex function
(Aszódi & Taylor, 1994a). The extent of the
adjustment was regulated by ‘‘strictness’’ values,
which were close to 1 for hard distances and close to
0 for soft distances. In energetic terms, this
adjustment strategy is equivalent to replacing the
detailed description of the interresidue potentials by
their corresponding minima.

Adjustment of ‘‘experimental’’ distances was
carried out so that if an interresidue distance was
shorter than the lower simulated NOE limit then it
was increased, if it was longer than the upper limit
then it was reduced. No adjustment was performed
if the distance in question fell between the two limits.
This strategy corresponds to a potential well with a
flat bottom.

For all interresidue distances, a minimal and
maximal separation can be calculated; the minimal
value, representing steric repulsion, was determined
by the sum of the appropriate van der Waals radii, the
maximal value by the expected maximal separation
for two residues linked by a fully extended chain or
by the estimated diameter of the molecule (Aszódi &
Taylor, 1994a), whichever the smaller. These minimal
and maximal limits were applied to all residue pairs
as hard restraints.

Residue accessibility

Accessibility was calculated by the ‘‘cone’’
algorithm (Aszódi & Taylor, 1994b) with minor
modifications, the most important being that the
cone for the kth residue was required to contain only
those residues closer than 8.0 Å. This local approach
improved the estimation of burial for residues
situated near crevices on the protein surface and
resulted in a considerable increase in computing
speed.

In previous versions of DRAGON, residue burial
adjustment was based upon a simple logic: it was
undesirable for hydrophobic residues to be on the
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surface, and equally undesirable for hydrophilics to
reside in the interior. Since in the present study the
residues had different chemical identities corre-
sponding to the 20 natural amino acids with 20
different hydrophobicity values, a more detailed
treatment was necessary. To this end the distribution
of conic accessibility values for all 20 amino acids in
a reference set of protein structures were approxi-
mated by histograms. For each amino acid type, the
central 80% portion of its accessibility distribution
was considered acceptable and if a residue in the
model had an accessibility value within this range
then no adjustment was performed. If a residue had
an accessibility value that fell into the lower 10% of
the accessibility distribution corresponding to its
amino acid type, then that residue was considered
too exposed and it was moved towards the centre of
the molecule. Similarly, residues that were more
buried than 90% of the native residues of the same
amino acid type were moved towards the surface.
The extent of the adjustment in both cases was
graded according to the actual position in the
accessibility distribution curve; wild outliers were
adjusted more strictly.

Tangles

The various distance geometry approaches based
on the projection algorithm just generate point
coordinates from interpoint distances and have no
information about the connectivity of the polypep-
tide chain. As a result, tangled conformations are
frequently observed. Such structures are very few, if
not completely absent, among naturally occurring
folded polypeptides (Connolly et al., 1980) and
therefore tangled conformations produced by the
distance geometry algorithm must be filtered out. To
this end a simple and fast heuristic was devised that
can correct most tangled conformations.

First, the polypeptide chain was divided into
segments according to its secondary structure. The
basic idea of tangle filtering was that different
segments were not allowed to penetrate each other.
To this end, chain segments were represented with
suitably chosen sets of tetrahedra and penetration
was detected if another segment intersected at least
one of these tetrahedra.

The concept of containment detection is easier
to understand in a unidimensional example (Fig-
ure 2A). If the point Pin is between the two points
R0 and R1, then its position vector P� in can be
expressed as a linear combination of the position
vectors R� 0 and R� 1:

P� in = s0R� 0 + s1R� 1 (5)

so that the coefficients s0 and s1 obey the following
relations:

s0 + s1 = 1, 0Es0, s1E1 (6)

The two points R0 and R1 define a unidimensional
simplex. By analogy, the point Pin is lying within a
tetrahedron (the 3D simplex) defined by the four

Figure 2. The tetrahedral containment algorithm. A, The
unidimensional case. B, The three-dimensional case. See
the text for explanation and details.

points R0, R1, R2, R3 if the coefficients si , i = 0, . . . , 3
in the linear combination:

P� in = s
3

i = 0

siR� i (7)

satisfy the following relations:

s
3

i = 0

si = 1, [si :0EsiE1 (8)

The coefficients can be found as follows. By
subtracting R� 0 from both sides of equation (7) and
expressing s0 = s1 + s2 + s3 the equation:

p� = s1r� 1 + s2r� 2 + s3r� 3 (9)

is obtained. In other words, the vector s� = (s1, s2, s3)
corresponds to the position vector p� of P in a local
coordinate system with origin R0 and (non-orthog-
onal) base vectors r� 1, r� 2, r� 3 (Figure 2B). Equation (9)
can be recast in matrix form:

R·s� = p� (10)

where the columns of the matrix R are the base
vectors:

R = [r� 1=r� 2=r� 3] (11)

Equation (10) can be solved by singular value
decomposition (Rózsa, 1991), which automatically
finds the 3D subspace spanned by the tetrahedron
even in D > 3 hyperspaces where the matrix R has D
rows and three columns. For a proper tetrahedron,
R has a rank r(R) = 3. If the four points do not span
a tetrahedron because they lie in a D < 3D subspace,
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Figure 3. Sets of tetrahedra superimposed on secondary
structures. The thick lines symbolise the Ca-backbones, the
various thin lines represent the tetrahedra. A, Helices.
Only every second tetrahedron is shown for clarity. B,
Sheets.

main-chain H bond (Figure 3B). Finally, no
tetrahedra were put on coil segments. Tangle
detection was then carried out following each
projection step by testing all tetrahedra in helices and
sheets for containing pieces of the chain from all
other segments. If two segments were found to
intersect then both were moved away from each other
as rigid bodies. The procedure was repeated until no
more intersections were found.

Model quality assessment

Rigid-body structural alignment

Model structures were compared with the known
PDB structures by weighted rigid-body rotation
using McLachlan’s algorithm (McLachlan, 1979).
Only the backbone Ca atoms were used in the
comparison. The weights wi were derived from the
B-factors Bi in the PDB entries†, so that flexible
portions of the target structure with large B-factors
were given less weight:

wi = Bmax − Bi

Bmax − Bmin
(14)

where Bmin and Bmax were the smallest and largest
B-factor in the known structure, respectively. The
similarities were then expressed as Ca coordinates
RMS deviations.

Precision and accuracy

Typically, the analysis of NMR-derived data leads
to a collection of plausible structures. Since the native
structure is unknown, direct assessment of mod-
elling accuracy via RMS deviations is impossible.
Accuracy may instead be determined by comparing
the simulated NMR spectra calculated from the
models with the experimental spectrum in a manner
analogous to the R-factor determination in X-ray
crystallography (James, 1994). In our simulation
study, we had the advantage of knowing the target
structures and therefore accuracy was monitored
through RMS deviations as described above.

The precision, on the other hand, is easy to
determine; a useful measure could be the average
RMS deviation of the individual models from their
average. Whereas a high level of precision (i.e. a set
of very similar model structures) does not necessarily
mean that the native conformation was found, a low
level of precision usually indicates that the modelling
algorithm did not perform adequately. The RMS Ca

backbone deviations between the individual models
and their average was determined and the average of
these RMS values was used as an indication of
modelling precision.

Topology comparison

Model structure topologies were compared with
the corresponding native topologies by visual
inspection. The target and model backbone coordi-

this condition is indicated by the decomposition
algorithm returning a rank r(R) < 3.

Having found the coefficient vector s� = (s1, s2, s3),
the missing coefficient s0 can now be obtained by
simply observing that s0 = s1 + s2 + s3. If all coeffi-
cients are in the range 0. . . 1, then the point P is inside
the tetrahedron. To decide whether a portion of a line
between two points PA and PB is contained by a
tetrahedron even if the points themselves are
outside, we observe that every point P on the PA :PB

segment can be expressed as the linear combination:

P = lPA + (1 − l)PB , 0ElE1 (12)

see equation (5), and the tetrahedral coefficients, si

for P can be obtained from those of PA and PB (ai and
bi , respectively) because:

P = s
3

i = 0

siR� i = s
3

i = 0

(lai + (1 − l)bi )R� i (13)

If there is a range of 0ElminElmaxE1 such that all
coefficients si satisfy the conditions in equation 8 then
the segment PA :PB intersects the tetrahedron.

The chain segments were represented by tetrahe-
dra as follows. Helices were made up by tetrahedra
defined by the points (i, i + 1, i + 2, i + 3),
(i + 1, i + 2, i + 3, i + 4), . . . where i is the index of the
first Ca atom in the helix (Figure 3A). Sheets were
treated as sets of non-overlapping tetrahedra made
up by the four Ca atoms surrounding each

† The B-factors of the tendamistat structure (3AIT)
were simulated from RMS deviations between a set of
NMR structures.



JMB—MS 692

Global Folds from Sparse Distance Data314

nates were smoothed by repeatedly scanning a
moving average window along the chain, and the
smoothed models aligned to the target were
displayed and inspected using a simple molecular
graphics program developed in our laboratory. Tangle
checks were performed on the unsmoothed model
backbones.

The model folds were classified into correct,
slightly incorrect, incorrect and mirror image
topologies. Folds in which just one secondary
structure element was misplaced were regarded as
slightly incorrect, two or more misplaced segments
were classified as incorrect topologies. Topologies
that were mirror images of the native topology
formed a special group.

X-PLOR controls

The performance of the DRAGON algorithm was
compared with that of X-PLOR Version 3.1 (Brünger,
1992), a popular tool frequently used for NMR
structure determination. The model residue and
parameter files were written for X-PLOR so that all
data corresponded to the conventions used by
DRAGON as closely as possible.

Chain geometry

A general carbon atom type was defined for
representing backbone Ca atoms with a van der
Waals radius of 2.0 Å. The monomer side-chains
were described by 20 pseudo-Cb atoms for each
amino acid type using the same van der Waals radii
and Ca–Cb distances as in DRAGON (Table 1). The
coplanarity of the atoms in the monomers was
maintained by defining the appropriate improper
axes of rotation. The virtual Ca bond angles and the
Ca–Ca–Cb angles were allowed to vary around their
mean values as in DRAGON. This was achieved by
incorporating the equivalent distance ranges
Ca(i − 1)–Ca(i + 1), Ca(i − 1)–Cb(i ) and Cb(i )–Ca(i + 1)
as constraints throughout the calculations. The force
constants were 1000 kcal/mol per Å2 for the
pseudobonds and 500 kcal/mol per rad2 for the
pseudoimproper rotation axes and the distance
ranges restraining the pseudobond angles. These
values were the same for all monomers and were
kept constant throughout the simulations.

Secondary structure geometry was maintained as
follows. For helices, the Ca(i )–Ca(i + 3) distances
were restrained with an upper limit of 6.9 Å. In order
to obtain right-handed helices, the virtual Ca bond
torsional angles were also loosely constrained to
48(220)°. b-Sheet geometry was imposed by
restraining the direct and adjacent cross-strand Ca

distances with target values of 5.1 Å and 6.1 Å,
respectively. The distances between equivalent
carbon atoms two strands away from each other on
a b-sheet were also constrained with target values of
10 Å. These constraints were enforced by a soft,
asymptotic square-well function (Nilges et al., 1988)
with a constant force constant of 50 kcal/mol per Å2.

Simulated annealing protocol

For each subset of long-range simulated NOE
distance restraints, a family of 25 conformations was
calculated. The NOE restraints were applied to the
pseudo-Cb atoms as in DRAGON-3, and were
enforced by the same square-well potential as
described above for the a-helices and b-sheets.
Non-bonded interactions were represented by a
quartic hard-sphere potential. A simulated anneal-
ing protocol, based on a method by Nilges et al.
(1988), was used, starting from extended confor-
mations. During dynamics, temperature coupling
(Berendsen et al., 1984) was used and bond stability
was imposed using the SHAKE method (Rykaert
et al., 1977; van Gunsteren & Berendsen, 1977).
Initially the force constant for the non-bonded
interaction potential was 0.002 kcal/mol per Å2 with
the atomic radii set to 1.2 times the values used in
DRAGON. The slope of the asymptote for the
distance restraint function was 0.1. Using these
values, 50 cycles of restrained Powell minimization
(Powell, 1977) were performed. The atomic velocities
were scaled to a Maxwellian population at 4000 K
and 80 ps of molecular dynamics was calculated,
with a target temperature of 4000 K. The slope of the
asymptote for the distance constraint potential was
increased to 1.0 and a further 40 ps of high-tempera-
ture dynamics was calculated. The system was then
cooled to a simulated temperature of 100 K in 25 K
steps, and for each target temperature 00.39 ps of
restrained dynamics was calculated. At each cycle,
the sizes of the atomic radii relative to the values
used in DRAGON were scaled down from 1.2 and the
force constant for the non-bonded potential was
scaled up from 0.002 exponentially such that the final
values were 1.0 and 4.0, respectively. Finally, 1000
cycles of Powell minimization were performed.

Implementation

DRAGON-3 was implemented as an ANSI C
program by A.A. The models presented here were
produced by running DRAGON-3 in batch mode on
various SGI computers. Execution time for a 3ICB
model (75 residues) was about two minutes on an
SGI Challenge S equipped with a R4400/150 MHz
processor. X-PLOR was run on a Sun Sparcstation 10
model 41, and a 3ICB model with 86 long-range
restraints was generated in about 35 minutes. The
corresponding execution time for DRAGON on the
same machine was about four minutes. The plots
were generated using the ACE/gr program by Paul
J. Turner, the protein cartoons were drawn by the
RasMol package (author Roger Sayle).

Data

For the purposes of this study, a set of
well-resolved small monomeric proteins was needed
that represented the major structural classes. The
target structures (Brookhaven codes are given in
parentheses) chosen for analysis were bovine
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A

B

Figure 4. Distribution of conserved hydrophobic
residues in the bovine vitamin D-dependent Ca2+-binding
protein (3ICB). A, Conservation (lower graph) and
conserved hydrophobicity (upper graph) profiles obtained
from the multiple alignment. B, Position of hydrophobic
side-chains with a conservation score higher than 0.75.

albumin from Xenopus laevis (P05940) and from
Latimeria chalmersii (P02623), human S100-L protein
(P29034) and rat calpactin I light chain (P05943).

Tendamistat (3AIT)

This 74-residue long protein, an a-amylase
inhibitor from Streptomyces tendae, is a sandwich of
two, three-strand antiparallel b-sheets, and it
contains two disulphide bonds. The structure of the
PDB entry was determined by constrained energy
minimisation from solution NMR measurements
using the AMBER 3.0 protocol (Billeter et al., 1990).
The sequence database search provided a set of
relatively close homologues to the S. tendae sequence
and another set of very distant, spurious matches.
The multiple alignment was therefore constructed
from various a-amylase inhibitor sequences from
other Streptomyces species (PIR access codes P01093,
P07512, P09921, P20078 and P20596).

Thioredoxin (2TRX)

Thioredoxin is an electron transport protein from
Escherichia coli. The PDB entry contains two
chemically identical chains in the unit cell designated
A and B. Since parts of chain B are disordered, chain
A was chosen as the target structure. Thioredoxin is
108 residues long and contains a five-strand mixed
b-sheet in the core, shielded by five helices in a fold
similar to that of flavodoxin (4FXN). The structure
was determined at a resolution of 1.68 Å (Katti et al.,
1990). The multiple alignment was constructed from
the following protein sequences (PIR access codes in
parentheses): thioredoxin from Anabaena (P20857),
Saccharomyces cerevisiae (P22217), Aspergillus nidulans
(P29429) and Pisum sativum (P29450), protein S–S
isomerase (EC 5.3.4.1) precursor from mouse
(P09103) and from man (P07237), bloodstream-
specific protein 2 precursor from Trypanosoma brucei
(P12865) and a sequence described as a ‘‘probable
ERP72 protein homolog’’ from C. elegans.

Results

Bovine vitamin D-dependent Ca 2+-binding
protein

Conserved hydrophobicity

The conserved hydrophobicity score deduced
from the multiple alignment highlighted the
conserved components of the hydrophobic core
(Figure 4). With the exception of Leu23 and Val61, all
hydrophobic residues with a conservation higher
than 0.75 were in helical regions.

Model quality dependence on the number of
restraints

Four sets of simulated NOE restraints were
defined for the models, containing 86, 19, 10 and 5

vitamin D-dependent Ca2+-binding protein (3ICB),
tendamistat (3AIT) and thioredoxin (2TRX).

Bovine vitamin D-dependent Ca2+-binding protein
(3ICB)

This protein represented the all-a structural class.
It is 75 residues long and contains four a-helices and
a small irregular helix. The X-ray structure was
determined at 2.3 Å resolution (Szebenyi & Moffat,
1986). The following sequences were aligned with
the 3ICB sequence (PIR access codes in parentheses):
troponin C from chick (P02588) and from the
Japanese horseshoe crab (P15159), Caenorhabditis
elegans calmodulin-like protein (P04630), b-parv-
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A

B

C

Figure 5. Simulation results for the bovine vitamin D-dependent Ca2+-binding protein (3ICB). A, Average RMS deviation
of the models from the PDB structure as a function of the number of long-range distance restraints per residue. Circles
and squares represent the models generated by DRAGON-3 and X-PLOR, respectively. B, Results of the visual topology
checks. Open, hatched and filled bars symbolise correct, slightly incorrect and seriously incorrect topologies, respectively.
Chequered bars symbolise mirror images. For every restraint set, the left and right bars represent DRAGON (D) and
X-PLOR (X) models, respectively. C, Effect of the choice of restraints. The average RMS deviations for 20 datasets are
depicted as filled circles (the abscissae are the RMS values and the points are shifted vertically for clarity). The error bars
correspond to the standard deviations of the RMS values within the datasets. The pooled distribution of the model RMS
deviations is plotted in the background.

long-range restraints, respectively. An additional
dataset containing no restraints served as an internal
control.

With 86 long-range restraints, both DRAGON and
X-PLOR correctly identified the native fold, the
average RMS deviation being slightly better for the
X-PLOR structures than for the DRAGON structures.
As the number of restraints decreased, DRAGON
performed increasingly better than X-PLOR. With 19
restraints, the average RMS of the models produced
by the two programs were about the same, X-PLOR
still having a slight advantage. With ten or five

restraints, however, the DRAGON structures still
had essentially correct topologies (save occasional
misplaced helices), while the X-PLOR models
became increasingly inaccurate (Figure 5A and B).
Without any long-range restraints, X-PLOR failed to
produce compact structures at all, which rendered
the comparison meaningless (Table 2).

Although the average RMS of the DRAGON
structures was as high as 10 Å in the no-restraints
case, the program still correctly identified the native
topology in 40% of the runs and always produced
compact, globular structures (Figure 6).
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Table 2. RMS deviation of model structures from target 3ICB
RMS (Å) S.D. (Å)

Number of Restraints
restraints per residue DRAGON X-PLOR DRAGON X-PLOR

86 1.14 2.88 2.39 0.21 0.17
19 0.25 4.93 4.44 0.48 1.52
10 0.13 6.26 7.33 2.04 2.51

5 0.07 6.32 11.2 1.64 2.38
0 0.00 10.0 21.3 1.50 3.20

Averages and standard deviations of the individual RMS values are tabulated as a
function of the number of simulated NOE restraints for models produced by DRAGON
and X-PLOR. Entries significantly (P < 0.01) lower than their counterparts are set in
boldface.

Model quality dependence on the choice of
restraints

The sensitivity to the choice of the distances was
tested on 20 different datasets each containing ten
restraints. For each dataset, 25 models were
generated by DRAGON. The pooled distribution of
the RMS values of these 500 models was unimodal
with a maximum at 5.0 Å, the overall average RMS
value was 6.55(21.76)Å. The average RMS devi-
ations of the individual datasets spanned a range
from 5.37 Å to 8.61 Å (Figure 5C).

Due to the much higher CPU time requirements of
the X-PLOR calculations, five representative datasets
were chosen among the 20 datasets described above
and 25 models were generated from these by
X-PLOR. For the same dataset, DRAGON-3 per-
formed consistently better than X-PLOR, as indicated
by comparison of the corresponding RMS averages
(Table 3).

Tendamistat

Conserved hydrophobicity

The hydrophobic core of tendamistat is not so well
defined as that of 3ICB (Figure 7). The edge strands
52–57 in sheet 1 and 67–73 in sheet 2 possess no
hydrophobic residues with a conservation score
higher than 0.75, while the remaining strands contain
mainly smaller hydrophobic residues. Two con-
served hydrophobic residues, Trp18 and Ala28
occupy exposed positions, while the flexible

N-terminal tail of the molecule contains two more
conserved hydrophobics, Val4 and Ala8.

Model quality dependence on the number of
restraints

The tendamistat datasets contained 120, 46, 10, 5
and 0 long-range simulated NOE restraints. For this

A

B

Figure 7. Distribution of conserved hydrophobic
residues in tendamistat (3AIT). Symbols are as in Figure 4.
Note the exposed hydrophobic residues Trp18 and Ala28.

Table 3. Comparison of representative ten-restraint
datasets for 3ICB

RMS (Å) S.D. (Å)
DRAGON X-PLOR DRAGON X-PLOR

5.37 7.14 1.06 3.03
5.88 8.16 1.46 2.87
6.43 7.76 1.06 2.50
6.71 8.40 1.62 1.72
8.33 12.1 1.39 2.54

Averages and standard deviations of the individual RMS values
are tabulated as a function of the number of simulated NOE
restraints for models produced by DRAGON and X-PLOR. Entries
significantly (P < 0.01) lower than their counterparts are set in
boldface.
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small b-sandwich protein, DRAGON always per-
formed significantly better than X-PLOR, the latter
producing numerous mirror-image topologies and
heavily tangled structures (Figure 8A and B). The
DRAGON models were essentially correct down to
the five long-range restraint case, where packing
became loose but the native topology was still
preserved (Figure 9). Slightly incorrect topologies
(5 out of 25) were observed only without any
long-range restraints (Table 4).

From a modelling point of view, the structure of
tendamistat has a few inconvenient features. The
N-terminal end of the molecule is rather mobile,
which is reflected in the B-factor entries in the PDB
file (obtained from the RMS deviations between a set
of NMR structures). The presence of conserved
apolar residues occupying exposed positions on the
surface, which is not uncommon among small
proteins involved in non-covalent protein-protein
interactions such as enzyme inhibition, can confuse
DRAGON’s hydrophobic core-building heuristics,
which forces exposed hydrophobic residues towards
the centre of the molecule if no extra information is
available. With just five long-range distance
restraints DRAGON therefore was also unable to
pack the b-sheets together.

Model quality dependence on the choice of restraints

The assessment was performed in the same way as
for 3ICB models (see above). The 20 distance sets,
each containing ten restraints, were submitted to
DRAGON and 25 models were generated for each
set. The pooled distribution of the RMS deviations of
these 500 models was bimodal, with maxima at
approximately 6.0 and 9.0 Å. The overall average
RMS value was 7.49(21.52)Å. The average RMS
deviations of the individual datasets spanned a range
from 5.24 Å to 9.31 Å (Figure 8C).

In the majority of cases DRAGON again
performed significantly better than X-PLOR when
the two methods were compared using five
representative datasets (Table 5).

Thioredoxin

Conserved hydrophobicity

Thioredoxin has the most complex structure
among the proteins modelled in this study. It
contains a five-strand mixed b-sheet in the core,
shielded by helices and represented a challenge
to both programs. The key conserved hydrophobic
residues distribute evenly in the core (Figure 10),
but the overall level of conservation was somewhat
lower than for the two other target proteins, probably
due to the larger number of sequences (12) in the
multiple alignment. Therefore only 11 hydrophobic
residues had conservation scores higher than 0.75.
One of these, Trp31, occupies an exposed position
at the beginning of the second helix (residues 32
to 49).

A

B

C

Figure 8. Simulation results for tendamistat (3AIT).
Symbols are as in Figure 5.
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Table 4. RMS deviation of model structures from target 3AIT
RMS (Å) S.D. (Å)

Number of Restraints
restraints per residue DRAGON X-PLOR DRAGON X-PLOR

120 1.62 3.72 5.29 0.16 2.19
46 0.62 4.12 5.99 0.22 2.06
10 0.14 5.76 7.32 0.56 1.46
5 0.07 7.70 9.85 0.36 1.06
0 0.00 9.38 11.9 0.66 1.30

Data and symbols are as in Table 2.

Model quality dependence on the number of
restraints

The NOE distance dataset contained 161, 48, 30,
20 and 0 simulated restraints. Starting from the
two largest restraint sets, DRAGON always found
the correct topology and the average RMS of the
models were good. X-PLOR, on the other hand,
produced several mirror-image topologies even
for the largest dataset and the structures were
occasionally tangled as well, giving rise to
significantly higher average RMS values. When
the number of restraints was reduced to 30,
DRAGON produced two distinct subsets of
solutions: 12 models out of 25 were just as good
as those obtained from the large dataset runs,
possessing correct topologies with RMS values
around 4.5 Å, while the other half were less
satisfactory, with incorrect topologies (Figure 11A
and B). At this stage, the models produced by
X-PLOR were comparable with those of DRAGON,
with the exception that the number of mirror images
and other seriously incorrect topologies was higher
(Figure 12). On further reduction of the number of
restraints, both programs produced models with
high RMS values and about one-third of the models
had correct topologies (Table 6).

Model quality dependence on the choice of
restraints

The most interesting behaviour was expected at
the ‘‘crossover point’’ where two distinct families of
models were produced from a 30-restraint set. The 20
distance sets, each containing 30 restraints, were
therefore submitted to DRAGON and for each set 25
models were generated. The pooled distribution of
the RMS deviations of the 500 models was
multimodal, containing four distinct peaks at 4.5 Å,
6.5 Å, 9 Å and 10.5 Å, respectively. The overall
average RMS value was 7.97(22.35)Å. The average

RMS deviations of the individual datasets spanned
a range from 5.3 Å to 10.1 Å (Figure 11C). The
standard deviations of RMS values were high for
most datasets, indicating that a considerable range of
the overall distribution was sampled, producing
subsets of high and low-quality models from the
same restraints.

DRAGON and X-PLOR performed similarly when
compared using representative 30-restraint datasets.
In four out of five cases, there was no significant
difference between the average RMS values (Table 7).

With only a small number of restraints, DRAGON

A

B

Figure 10. Distribution of conserved hydrophobic
residues in thioredoxin (2TRX). Symbols are as in Fig-
ure 4. Note the exposed hydrophobic residues Trp18 and
Ala28.

Table 5. Comparison of representative ten-restraint
datasets for 3AIT

RMS (Å) S.D. (Å)
DRAGON X-PLOR DRAGON X-PLOR

5.24 6.45 0.36 1.68
6.22 7.61 0.43 1.44
7.35 8.19 0.70 1.57
8.58 10.6 0.74 1.20
8.83 7.79 0.54 0.87

Data and symbols are as in Table 3.
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A

B

C

Figure 11. Simulation results for thioredoxin (2TRX).
Symbols are as in Figure 5.

performed significantly better, because X-PLOR
failed to pack the helices against the central sheet and
therefore the RMS deviations were much larger than
those obtained for the compact DRAGON structures.
It was clear, however, that neither program could
produce useful results if less than 20 long-range
restraints were available. Comparison with the
results obtained from the simulations of 3ICB and
3AIT suggests that the minimal number of
long-range restraints necessary for correct fold
identification is a non-linear function of chain length.

Discussion

Accuracy

In most cases, DRAGON produced more accurate
results than X-PLOR, especially when the number of
distance restraints was small. It should be kept in
mind that in a real NMR structure determination
problem the maximal accuracy is limited by the
quality of the experimental data. This aspect was
modelled by establishing an artificial 22 Å range for
all simulated restraints, which of course may be
variable when real experimental distance estimates
are used. Also, an important simplification in the
present study was that side-chains were replaced by
a single pseudo-Cb atom and the restraints were
imposed on these whereas in reality the NOE-
derived restraints apply to the H atoms. It is possible,
however, to convert individual inter-H distance
restraints into side-chain centroid distance restraints.
These restraints can be used by DRAGON to
generate a set of starting structures, which in turn
can be refined by another program such as X-PLOR
using the original H–H distance restraints applied to
a full-atom representation of the molecule.

In the absence of detailed structural information,
usually a number of different folds are generated.
The gradual projection algorithm of DRAGON was
often capable of finding the correct topology even
under unfavourable circumstances due to the ease
with which large structural rearrangements can be
made in high-dimensional spaces. This correlates
with the observation that local minima can be
avoided by performing energy minimisation in four
or more dimensions (Crippen, 1982; Purisima &
Scheraga, 1986).

Precision and sampling

The precision of the DRAGON models was almost
always significantly better than those produced by
X-PLOR, judged by the RMS deviation values of the
individual models measured with respect to the
corresponding average structures (Table 8).

Precision, however, cannot be evaluated separ-
ately from the sampling properties of the algorithm
in question. While it is practically impossible to
perform an exhaustive search in protein confor-
mational spaces, good sampling at least should
ensure that a reliable, unbiased estimate is obtained.

The sampling properties of distance geometry-
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Table 6. RMS deviation of model structures from target 2TRX
RMS (Å) S.D. (Å)

Number of Restraints
restraints per residue DRAGON X-PLOR DRAGON X-PLOR

161 1.49 3.86 4.96 0.13 2.55
48 0.44 4.57 6.54 0.62 3.02
30 0.28 8.64 8.61 2.17 3.62
20 0.19 10.6 11.3 1.0 2.7

0 0.00 11.4 14.1 1.6 2.5

Data and symbols are as in Table 2.

based techniques were assessed in detail by Havel
(1991). The ‘‘randomized metrization’’ method used
in his programs, which coupled the selection of
uniformly distributed trial distances with triangle
inequality smoothing, provided very good results.
An efficient version of this algorithm called ‘‘partial
metrization’’ was implemented by Kuszewski et al.
(1992). A similar approach was used in the DRAGON
simulations, which started with a random initial
distance matrix but the triangle inequality smooth-
ing was performed indirectly, through adjusting the
elements of the metric matrix in a self-consistent loop
(Aszódi & Taylor, 1994a). This smoothed distance
matrix, subsequently projected into a high-dimen-
sional Euclidean space, corresponded to a much
greater structural variability than can be obtained
from starting a random coil conformation in 3D. Our
previous studies with the predecessors of the present
algorithm (Aszódi & Taylor, 1994b) showed that in
the absence of specific distance restraints a wide
variety of structures was generated. Taking into
account the low standard deviation of model RMS
values obtained in the present study, it can be
concluded that the algorithm delivered high
precision and good sampling at the same time.

Robustness

In the present context, the robustness of an
algorithm means the ability to produce satisfactory
results even if the input data are scarce or unreliable.
For an NMR structure determination problem,
the lack of interresidue distance data could be
compensated for by applying various heuristics
based on our general knowledge about proteins.
DRAGON employs a wide range of such heuristics
to achieve its goal; the most important of these
are the modelling of the hydrophobic effect, the
elimination of tangled conformations and the
chirality checks.

Compactness and the hydrophobic effect

The hydrophobic effect was modelled by reducing
the distances between hydrophobic residues and by
constantly monitoring the accessibility of every
side-chain in the molecule. The construction of the
hydrophobic core was directed by the identification
of the conserved hydrophobic residues. When no
external distance restraints were available, this
approach still succeeded in producing compact
structures, often with the correct topology, whereas
X-PLOR usually generated loose tangles ‘‘floating’’
randomly. It must be noted, however, that DRAGON
was more successful with a-helices, which often
provide clear structural orientation in the form of
their hydrophobic moments.

The projection into spaces of gradually decreasing
dimensionality also facilitated the formation of
compact structures, since this operation effectively
compresses the point set being projected. Various
checks were applied to ensure that the correct point
density was maintained through the series of
projections (Aszódi & Taylor, 1994b).

Tangles

Another, often overlooked, problem in simulations
is tangling. Tangles are very rare if not totally absent

Table 8. RMS deviation of model structures from their
respective average structure

RMS (Å)
Number of Restraints
restraints per residue DRAGON X-PLOR

3ICB
86 1.14 0.97 0.90
19 0.25 2.48 2.59
10 0.13 4.03 5.43

5 0.07 4.62 7.00
0 0.00 7.69 10.7

3AIT
120 1.62 1.69 4.00

46 0.62 1.73 4.36
10 0.14 2.87 5.78

5 0.07 2.61 5.35
0 0.00 3.38 5.72

2TRX
161 1.49 1.54 4.79

48 0.44 1.92 5.71
30 0.28 8.06 6.62
20 0.19 4.20 7.60

0 0.00 6.57 8.87

Bold figures indicate entries significantly lower than their
counterparts.

Table 7. Comparison of representative ten-restraint
datasets for 2TRX

RMS (Å) S.D. (Å)
DRAGON X-PLOR DRAGON X-PLOR

5.30 6.48 1.67 3.07
6.84 6.03 1.96 2.28
7.46 8.56 1.74 3.67
8.48 10.3 2.50 2.73
9.37 10.2 2.37 2.63

Data and symbols are as in Table 3.
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in native polypeptide folds, yet they frequently
occur in models. Distance geometry techniques that
rely on metric matrix projection are particularly
liable to generate this kind of artifact, especially
when larger molecules are modelled, which can
fold into more complex patterns. Tangles may trap
the chain in an incorrect conformation and thereby
hinder the convergence of the algorithm, rendering
it less robust. Tangles are difficult to detect by
computer because of the lack of a reliable
mathematical definition. (Knots, which can exactly
be defined in topological terms, occur in closed
curves only, while protein backbones, in general,
are open curves.) The heuristic employed in
DRAGON-3 relied on the backbone hydrogen-bond
topology of secondary structures and therefore
cannot be considered universal: in its present
implementation, it cannot detect tangles in a chain
with no secondary structure at all. (Although the
present algorithm can be extended, further complex-
ity would incur a severe performance penalty.) Most
tangles were nevertheless successfully eliminated in
the simulations, indicating that an advantageous
trade-off was achieved between generality and
practicality.

Chirality

Chirality presents a persistent problem to all
distance geometry-based techniques, since the
handedness information is not contained in the
distance matrix and therefore even a perfect set of
distance restraints corresponds to the correct
topology, and its mirror image. Fortunately, incorrect
mirror images can be filtered out at the tertiary
structural level since the correct chirality of the
secondary structural elements are known. If the
handedness of helices and sheets are carefully
monitored as is done in the DRAGON algorithm,
then the mirror image topology will be an
energetically slightly unfavourable diastereomer,
rather than an indistinguishable enantiomer, of the
correct topology.

Spatial distribution of distance restraints

The distribution of the interresidue distance
restraints within the molecule determines the quality
ofthesimulationtoaconsiderabledegree,asindicated
by our results obtained from randomly chosen
distance sets containing the same number of
restraints. Although theoretically it might be possible
to find the best arrangement of a given number of
restraints for a particular structure, in practice the
freedom of choice usually does not exist. Our
simulations suggest that restraints between sec-
ondary structure elements alone are, in general, not
sufficient to determine the overall fold correctly.
Restraints between coils are also important, as
indicated by the tendamistat simulations where the
long, flexible chain segments showed a definite
tendency to intercalate between the sheets, thus
giving rise to incorrect models.

Comparison with other methods

Comparing the performance of DRAGON-3 with
other methods is difficult, because of the differences
in the published simulation protocols. For example,
Smith-Brown et al. (1993) impose simulated Ca–Ca

restraints with a constant 2 Å difference between the
lower and upper bounds onto a polyglycine
back-bone. On the other hand, Hoch & Stern (1992)
use a lollipop chain similar to ours, but the distance
restraints are applied to the Ca and pseudo-Cb atoms
as well, making the interpretation of the results more
difficult (see above). Ideally, one should compare all
available methods using the same protocol, which is,
unfortunately, impractical. We therefore decided to
compare DRAGON-3 with X-PLOR, a widely used
and very flexible tool. The simplified chain
representation of DRAGON-3 was transferred easily
to the X-PLOR protocol, enabling us to make
meaningful comparisons.

The task given to both algorithms was by no means
trivial. The distance restraint sets were designed to
be inaccurate; the lower and upper distance bounds
were separated by 4 Å, spanning a range twice as
much as the study described by Smith-Brown et al.
(1993). Also, the simulated NOE restraints were
applied to the pseudo-Cb atoms, while accuracy was
tested by Ca coordinate RMS deviations; thus, the
restraints had only an indirect effect on the backbone
conformations.

The results indicated that DRAGON had a definite
advantage in situations where robustness became
important, due to the extra background information
derived from the conserved hydrophobicity patterns,
and the detangling procedure. DRAGON also has the
appealing property that it always converges to a
compact three-dimensional conformation.

Conclusion

We have presented here a distance geometry-
based approach that was designed to incorporate a
general background knowledge about proteins in
order to produce acceptable results even when
specific structural information is scarce. The aim of
our work has been to show that topologically correct
solutions to sparse distance data are more easily
obtained when general properties of proteins are
incorporated, giving rise to compact, tangle-free
conformations with well-defined hydrophobic cores.
The method of attaining these attributes in the final
model is secondary and, although we preferred a
distance geometry-based approach, similar results
might well have been attained through optimisation
in Euclidean space. However, we did not simply
encode these general heuristics in one of the several
current refinement methods, as their orientation to
detailed atomic representation is not ideally suited to
the broad (topological) emphasis we desired. We
regard our method as suitable for generating an
ensemble of good starting conformations that might
then be further refined by a program such as
X-PLOR. A molecular modelling tool based on this
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tandem approach should help the experimentalist
obtaining more reliable structures from NMR data.
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Tankönyvkiadó, Budapest (in Hungarian).

Rykaert, J. P., Ciccotti, G. & Berendsen, H. J. C. (1977).
Numerical integration of the Cartesian equations of
motion of a system with constraints: molecular
dynamics of n-alkanes. J. Comp. Phys. 23, 327–341.

Smith-Brown, M. J., Kominos, D. & Levy, R. M. (1993).
Global folding of proteins using a limited number of
distance constraints. Protein Eng. 6, 605–614.

Szebenyi, D. M. E. & Moffat, K. (1986). The refined
structure of vitamin D-dependent calcium-binding
protein from bovine intestine. Molecular details, ion
binding and implications for the structure of other
calcium-binding proteins. J. Biol. Chem. 162, 8761–
8777.

Taylor, W. R. (1988). A flexible method to align large num-
bers of biological sequences. J. Mol. Evol. 28, 161–169.

Taylor, W. R. (1991). Towards protein tertiary fold
prediction using distance and motif constraints.
Protein Eng. 4, 853–870.

Taylor, W. R. (1993). Protein fold refinement: building
models from idealised folds using motif constraints
and multiple sequence data. Protein Eng. 6, 593–604.

van Gunsteren, W. F. & Berendsen, H. J. C. (1977).
Algorithms for macromolecular dynamics and
constrained dynamics. Mol. Phys. 74, 1311–1327.

Wako, H. & Scheraga, H. A. (1982). Distance-constraint
approach to protein folding. I. Statistical analysis of
protein conformations in terms of distances between
residues. J. Protein Chem. 1, 5–45.

Edited by F. Cohen

(Received 19 December 1994; accepted in revised form 23 May 1995)


